Development of Na-Based Seawater Batteries: “Key Components and Challenges”

Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng

Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 407-420.

PDF(17858 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(17858 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 407-420. DOI: 10.7536/PC220902
Review

Development of Na-Based Seawater Batteries: “Key Components and Challenges”

Author information +
History +

Abstract

Na-based seawater batteries are expected to become a new-generation of energy storage device due to its advantages of environmental friendliness, high energy density, and abundant and easy availability of seawater. Its working principle is that the conversion between the chemical energy and the electrical energy is achieved through redox reaction when seawater is considered as the electrolyte. In this review, the electrochemical principle, and design and optimization strategy of battery structure of Na-based seawater batteries are summarized. The latest research progress of Na-based seawater batteries is reviewed. Finally, the challenges to overcome the performance improvement and commercialization of Na-based seawater batteries are discussed, and the future development directions of the batteries are forecasted. The review provides the theoretical guidance for the development of Na-based seawater batteries, and then promotes Na-based seawater batteries support for major national needs such as the deep-sea energy supply and extremely environmental-energy source.

Key words

Na-based seawater batteries / electrochemical principle / key components and challenges / design and optimization of battery structure

Cite this article

Download Citations
Niu Wenhui , Zhang Da , Zhao Zhengang , et al . Development of Na-Based Seawater Batteries: “Key Components and Challenges”[J]. Progress in Chemistry. 2023, 35(3): 407-420 https://doi.org/10.7536/PC220902

References

[1]
Ellabban O, Abu-Rub H, Blaabjerg F. Renew. Sustain. Energy Rev., 2014, 39: 748.
[2]
Hunt C T. Chem. Eng. News Archive, 2008, 86(42): 66.
[3]
Zhang Y J, Senthilkumar S T, Park J, Park J, Kim Y. Batter. Supercaps, 2018, 1(1): 6.
[4]
Vaalma C, Buchholz D, Weil M, Passerini S. Nat. Rev. Mater., 2018, 3(4): 18013.
[5]
Choi J W, Aurbach D. Nat. Rev. Mater., 2016, 1(4): 16013.
[6]
Huppes G, Ishikawa M, Kramer G J. J. Ind. Ecol., 2011, 15(5): 677.
[7]
Huang Y M, Dong Y H, Li S, Lee J, Wang C, Zhu Z, Xue W J, Li Y, Li J. Adv. Energy Mater., 2021, 11(2): 2000997.
[8]
Huang C F, Ji Q Q, Zhang H L, Wang Y T, Wang S M, Liu X H, Guo Y M, Zhang C H. J. Colloid Interface Sci., 2022, 606: 654.
[9]
Weber A. Fuel Cells, 2021, 21(5): 440.
[10]
Chang S L, Hou M J, Xu B W, Liang F, Qiu X C, Yao Y C, Qu T, Ma W H, Yang B, Dai Y N, Chen K F, Xue D F, Zhao H P, Lin X T, Poon F, Lei Y, Sun X L. Adv. Funct. Mater., 2021, 31(22): 2011151.
[11]
Wu Y Q, Qiu X C, Liang F, Zhang Q K, Koo A, Dai Y N, Lei Y, Sun X L. Appl. Catal. B Environ., 2019, 241: 407.
[12]
Kim J K, Mueller F, Kim H, Jeong S, Park J S, Passerini S, Kim Y. ChemSusChem, 2016, 9(1): 1.
[13]
Hwang S M, Park J S, Kim Y, Go W, Han J, Kim Y, Kim Y. Adv. Mater., 2019, 31(20): 1804936.
[14]
Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. ChemSusChem, 2016, 9(9): 962.
[15]
Peled E, Golodnitsky D, Mazor H, Goor M, Avshalomov S. J. Power Sources, 2011, 196(16): 6835.
[16]
Yu J, Li B Q, Zhao C X, Zhang Q. Energy Environ. Sci., 2020, 13(10): 3253.
[17]
Son M, Park S, Kim N, Angeles A T, Kim Y, Cho K H. Adv. Sci., 2021, 8(18): 2101289.
[18]
Meng F L, Zhong H X, Bao D, Yan J M, Zhang X B. J. Am. Chem. Soc., 2016, 138(32): 10226.
[19]
Stamenkovic V, M Markovic N, Ross P N Jr. J. Electroanal. Chem., 2001, 500(1/2): 44.
[20]
Arruda T M, Shyam B, Ziegelbauer J M, Mukerjee S, Ramaker D E. J. Phys. Chem. C, 2008, 112(46): 18087.
[21]
Zhang L, Mukerjee S. J. Electrochem. Soc., 2006, 153(6): A1062.
[22]
Lane R F, Hubbard A T. J. Phys. Chem., 1975, 79(8): 808.
[23]
Wright J, Colling A. 1995, 29.
[24]
Deng J, Bae C, Marcicki J, Masias A, Miller T. Nat. Energy, 2018, 3(4): 261.
[25]
Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Shao-Horn Y. Nat. Chem., 2011, 3(7): 546.
[26]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1): 19.
[27]
Lu X F, Xia B Y, Zang S Q, David Lou X W. Angew. Chem. Int. Ed., 2020, 59(12): 4634.
[28]
Deng Y J, Luo J M, Chi B, Tang H B, Li J, Qiao X C, Shen Y J, Yang Y J, Jia C M, Rao P, Liao S J, Tian X L. Adv. Energy Mater., 2021, 11(37): 2101222.
[29]
Schmidt T J, Paulus U A, Gasteiger H A, Behm R J. J. Electroanal. Chem., 2001, 508(1/2): 41.
[30]
Wu X Y, Han X P, Ma X Y, Zhang W, Deng Y D, Zhong C, Hu W B. ACS Appl. Mater. Interfaces, 2017, 9(14): 12574.
[31]
Shen F C, Wang Y, Tang Y J, Li S L, Wang Y R, Dong L Z, Li Y F, Xu Y, Lan Y Q. ACS Energy Lett., 2017, 2(6): 1327.
[32]
McCrory C C L, Jung S, Peters J C, Jaramillo T F. J. Am. Chem. Soc., 2013, 135(45): 16977.
[33]
Kulkarni A, Siahrostami S, Patel A, Nørskov J K. Chem. Rev., 2018, 118(5): 2302.
[34]
Huang Z F, Song J J, Du Y H, Xi S B, Dou S, Nsanzimana J M V, Wang C, Xu Z J, Wang X. Nat. Energy, 2019, 4(4): 329.
[35]
Kang Y, Wang S, Zhu S Q, Gao H X, Hui K S, Yuan C Z, Yin H, Bin F, Wu X L, Mai W J, Zhu L, Hu M C, Liang F, Chen F M, Hui K N. Appl. Catal. B Environ., 2021, 285: 119786.
[36]
Xia B Y, Yan Y, Li N, Wu H B, Lou X W, Wang X. Nat. Energy, 2016, 1: 15006.
[37]
Meier J C, Galeano C, Katsounaros I, Witte J, Bongard H J, Topalov A A, Baldizzone C, Mezzavilla S, Schüth F, Mayrhofer K J J. Beilstein J. Nanotechnol., 2014, 5: 44.
[38]
Job N, Chatenet M, Berthon-Fabry S, Hermans S, Maillard F. J. Power Sources, 2013, 240: 294.
[39]
Shinde S S, Lee C H, Sami A, Kim D H, Lee S U, Lee J H. ACS Nano, 2017, 11(1): 347.
[40]
Guo L, Rueping M. Acc. Chem. Res., 2018, 51(5): 1185.
[41]
Zhang D, Zhao H P, Liang F, Ma W H, Lei Y. J. Power Sources, 2021, 493: 229722.
[42]
Lu L, Zheng Y, Yang R, Kakimov A, Li X. Mater. Today Chem., 2021, 21: 100488.
[43]
Kim Y, Kim H, Park S, Seo I, Kim Y. Electrochimica Acta, 2016, 191: 1.
[44]
Kim Y, Varzi A, Mariani A, Kim G T, Kim Y, Passerini S. Adv. Energy Mater., 2021, 11(38): 2102061.
[45]
Gao H X, Zhu S Q, Kang Y, Dinh D A, Hui K S, Bin F, Fan X, Chen F M, Mahmood A, Geng J X, Cheong W C M, Hui K N. ACS Appl. Energy Mater., 2022, 5(2): 1662.
[46]
Kim Y, Kim G T, Jeong S, Dou X W, Geng C X, Kim Y, Passerini S. Energy Storage Mater., 2019, 16: 56.
[47]
Yin W W, Fu Z W. ChemCatChem, 2017, 9(9): 1545.
[48]
Kim Y, Ha K H, Oh S M, Lee K T. Chem. Eur. J., 2014, 20(38): 11980.
[49]
Han J, Hwang S M, Go W, Senthilkumar S T, Jeon D, Kim Y. J. Power Sources, 2018, 374: 24.
[50]
Kim Y, Harzandi A M, Lee J, Choi Y, Kim Y. Adv. Sustainable Syst., 2021, 5(1): 2000106.
[51]
Kim Y, Shin K, Jung Y, Lee W G, Kim Y. Adv. Sustain. Syst., 2022, 6(6): 2100484.
[52]
Wang H, Yu D D, Kuang C W, Cheng L W, Li W, Feng X L, Zhang Z, Zhang X B, Zhang Y. Chem, 2019, 5(2): 313.
[53]
Sun J, Lee H W, Pasta M, Yuan H T, Zheng G Y, Sun Y M, Li Y Z, Cui Y. Nat. Nanotechnol., 2015, 10(11): 980.
[54]
Zhao C L, Lu Y X, Yue J M, Pan D, Qi Y R, Hu Y S, Chen L Q. J. Energy Chem., 2018, 27(6): 1584.
[55]
Hong Y S, Li N, Chen H S, Wang P, Song W L, Fang D N. Energy Storage Mater., 2018, 11: 118.
[56]
Senthilkumar S T, Go W, Han J, Pham Thi Thuy L, Kishor K, Kim Y, Kim Y. J. Mater. Chem. A, 2019, 7(40): 22803.
[57]
Kim D H, Choi H, Hwang D Y, Park J, Kim K S, Ahn S, Kim Y, Kwak S K, Yu Y J, Kang S J. J. Mater. Chem. A, 2018, 6(40): 19672.
[58]
Liang F, Qiu X C, Zhang Q K, Kang Y, Koo A, Hayashi K, Chen K F, Xue D F, Hui K N, Yadegari H, Sun X L. Nano Energy, 2018, 49: 574.
[59]
Kim Y, Jung J, Yu H, Kim G T, Jeong D, Bresser D, Kang S J, Kim Y, Passerini S. Adv. Funct. Mater., 2020, 30(24): 2001249.
[60]
Lim D H, Dong C, Kim H W, Bae G H, Choo K, Cho G B, Kim Y, Jin B, Kim J K. Mater. Today Energy, 2021, 21: 100805.
[61]
Luo W, Shen F, Bommier C, Zhu H L, Ji X L, Hu L B. Acc. Chem. Res., 2016, 49(2): 231.
[62]
Hu Z, Liu Q N, Chou S L, Dou S X. Adv. Mater., 2017, 29(48): 1700606.
[63]
Kim H, Park J S, Sahgong S H, Park S, Kim J K, Kim Y. J. Mater. Chem. A, 2014, 2(46): 19584.
[64]
Lee S, Cho I Y, Kim D, Park N K, Park J, Kim Y, Kang S J, Kim Y, Hong S Y. ChemSusChem, 2020, 13(9): 2220.
[65]
Armand M, Endres F, MacFarlane D R, Ohno H, Scrosati B. Nat. Mater., 2009, 8(8): 621.
[66]
Watanabe M, Thomas M L, Zhang S G, Ueno K, Yasuda T, Dokko K. Chem. Rev., 2017, 117(10): 7190.
[67]
Kim Y, Hwang S M, Yu H, Kim Y. J. Mater. Chem. A, 2018, 6(7): 3046.
[68]
Kim J K, Mueller F, Kim H, Bresser D, Park J S, Lim D H, Kim G T, Passerini S, Kim Y. NPG Asia Mater., 2014, 6(11): e144.
[69]
Lu Y, Li L, Zhang Q, Niu Z Q, Chen J. Joule, 2018, 2(9): 1747.
[70]
Tang B, Jaschin P W, Li X, Bo S H, Zhou Z. Mater. Today, 2020, 41: 200.
[71]
Yao Y F Y, Kummer J T. J. Inorg. Nucl. Chem., 1967, 29(9): 2453.
[72]
Whittingham, Stanley M. J. Chem. Phys., 1971, 54(1): 414.
[73]
Kim K K, Mundy J N, Chen W K. J. Phys. Chem. Solids, 1979, 40(10): 743.
[74]
La Rosa D, Monforte G, D’Urso C, Baglio V, Antonucci V, Aricò A S. ChemSusChem, 2010, 3(12): 1390.
[75]
Chi C, Katsui H, Goto T. Ceram. Int., 2017, 43(1): 1278.
[76]
Lu X C, Xia G G, Lemmon J P, Yang Z G. J. Power Sources, 2010, 195(9): 2431.
[77]
Will F G. J. Electrochem. Soc., 1976, 123(6): 834.
[78]
Flor G, Marini A, Massarotti V, Villa M. Solid State Ion., 1981, 2(3): 195.
[79]
Farrington G C, Briant J L. Mater. Res. Bull., 1978, 13(8): 763.
[80]
Harbach F. Solid State Ion., 1983, 9/10: 231.
[81]
Goodenough J B, Hong H Y P, Kafalas J A. Mater. Res. Bull., 1976, 11(2): 203.
[82]
Park H, Jung K, Nezafati M, Kim C S, Kang B. ACS Appl. Mater. Interfaces, 2016, 8(41): 27814.
[83]
Zhao C L, Liu L L, Qi X G, Lu Y X, Wu F X, Zhao J M, Yu Y, Hu Y S, Chen L Q. Adv. Energy Mater., 2018, 8(17): 1703012.
[84]
Senthilkumar S T, Han J, Park J, Hwang S M, Jeon D, Kim Y. Energy Storage Mater., 2018, 12: 324.
[85]
Hwang S M, Kim J, Kim Y, Kim Y. J. Mater. Chem. A, 2016, 4(46): 17946.
[86]
Hou M J, Yang X C, Liang F, Dong P, Chen Y N, Li J R, Chen K F, Dai Y N, Xue D F. ACS Appl. Mater. Interfaces, 2021, 13(28): 33262.
[87]
Kim K, Hwang S M, Park J S, Han J, Kim J, Kim Y. J. Power Sources, 2016, 313: 46.
[88]
Sahgong S H, Senthilkumar S T, Kim K, Hwang S M, Kim Y. Electrochem. Commun., 2015, 61: 53.
[89]
Yang X C, Su F M, Hou M J, Zhang D, Dai Y N, Liang F. Dalton Trans., 2021, 50(20): 7041.
[90]
Ping H, Tao Z, Jie J, Zhou H S. J. Phys. Chem. Lett., 2016, 7(7): 1267.
[91]
Senthilkumar S T, Park S O, Kim J, Hwang S M, Kwak S K, Kim Y. J. Mater. Chem. A, 2017, 5(27): 14174.
[92]
Li W J, Han C, Zhang K, Chou S L, Dou S X. J. Mater. Chem. A, 2021, 9(11): 6671.
[93]
Kim J, Park J, Lee J, Lim W G, Jo C, Lee J. Adv. Funct. Mater., 2021, 31(22): 2010882.
[94]
Zhang J T, Zhao Z H, Xia Z H, Dai L M. Nat. Nanotechnol., 2015, 10(5): 444.
[95]
Abirami M, Hwang S M, Yang J C, Senthilkumar S T, Kim J, Go W S, Senthilkumar B, Song H K, Kim Y. ACS Appl. Mater. Interfaces, 2016, 8(48): 32778.
[96]
Shin K H, Park J, Park S K, Nakhanivej P, Hwang S M, Kim Y, Park H S. J. Ind. Eng. Chem., 2019, 72: 250.
[97]
Liardet L, Hu X L. ACS Catal., 2018, 8(1): 644.
[98]
Pletcher D, Li X H, Price S W T, Russell A E, Sönmez T, Thompson S J. Electrochimica Acta, 2016, 188: 286.
[99]
Mahmood J, Li F, Kim C, Choi H J, Gwon O, Jung S M, Seo J M, Cho S J, Ju Y W, Jeong H Y, Kim G, Baek J B. Nano Energy, 2018, 44: 304.
[100]
Suh D H, Park S K, Nakhanivej P, Kim Y, Hwang S M, Park H S. J. Power Sources, 2017, 372: 31.
[101]
Kim C, Kim S, Kwon O, Kim J, Kim G. ChemElectroChem, 2019, 6(1): 2.
[102]
Zhang Y J, Park J S, Senthilkumar S T, Kim Y. J. Power Sources, 2018, 400: 478.
[103]
Khan Z, Park S O, Yang J C, Park S, Shanker R, Song H K, Kim Y, Kwak S K, Ko H. J. Mater. Chem. A, 2018, 6(47): 24459.
[104]
Dien Kha Tu N, Park S O, Park J, Kim Y, Kwak S K, Kang S J. ACS Appl. Energy Mater., 2020, 3(2): 1602.
[105]
Kim S, Ji S, Yang H, Son H, Choi H, Kang J, Li O L. Appl. Catal. B Environ., 2022, 310: 121361.

Funding

National Natural Science Foundation of China(12175089)
National Natural Science Foundation of China(12205127)
Key Research and Development Program of Yunnan Province(202103AF140006)
Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202001AW070004)
PDF(17858 KB)

Accesses

Citation

Detail

Sections
Recommended

/