Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery

Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua

Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 390-406.

PDF(28259 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(28259 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 390-406. DOI: 10.7536/PC220913
Review

Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery

Author information +
History +

Abstract

With the rapid development of portable electronic devices, electric vehicles, and smart grids, there is an increasing interest in high-energy-density lithium metal batteries. Uneven Li stripping or deposition on the surface of lithium metal will lead to the growth of lithium dendrites, which can easily pierce the separator and cause the short circuit in the battery. Moreover, the highly reactive lithium metal will continue to react with the electrolyte, resulting in an unstable solid electrolyte. interfacial (SEI) film and irreversible capacity loss. Taking high-energy-density and high safety into account is a key scientific problem that needs to be solved urgently in the development and application of lithium metal batteries. The interaction of strong electron withdrawing group (C≡N) in polyacrylonitrile (PAN) polymer and C=O in carbonate solvent can form a more stable SEI film. As a lithium anode coating, PAN can also inhibit the growth of lithium dendrites. In addition, due to the low lowest unoccupied molecular orbital, high electrochemical stability and wide electrochemical window, PAN can be regard as polymer electrolytes for lithium metal batteries, and matched with a high-voltage cathode to achieve both high energy density and safety. Thus, PAN polymer has significant potential application in electrolytes for lithium metal batteries. This review mainly starts from the different states of electrolytes (liquid, gel, and solid state). Recent research development of PAN polymer as separators and lithium anode protective layers in liquid electrolytes, as well as its application in gel electrolytes and solid-state electrolytes are presented. Finally, the review prospects the development trend of PAN polymer in lithium metal battery electrolytes.

Key words

polyacrylonitrile / separator / lithium anode / gel electrolyte / solid-state electrolyte

Cite this article

Download Citations
Yu Xiaoyan , Li Meng , Wei Lei , et al . Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery[J]. Progress in Chemistry. 2023, 35(3): 390-406 https://doi.org/10.7536/PC220913

References

[1]
Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y. Adv. Energy Mater., 2018, 8(11): 1702657.
[2]
Cui Y, Wan J Y, Ye Y S, Liu K, Chou L Y, Cui Y. Nano Lett., 2020, 20(3): 1686.
[3]
Zhang D C, Xu X J, Qin Y L, Ji S M, Huo Y P, Wang Z S, Liu Z B, Shen J D, Liu J. Chem. Eur. J., 2020, 26(8): 1720.
[4]
Fan L Z, He H C, Nan C W. Nat. Rev. Mater., 2021, 6(11): 1003.
[5]
Manthiram A, Yu X W, Wang S F. Nat. Rev. Mater., 2017, 2(4): 16103.
[6]
Su A Y, Guo P L, Li J, Kan D X, Pang Q, Li T Q, Sun J Q, Chen G, Wei Y J. J. Mater. Chem. A, 2020, 8(9): 4775.
[7]
Fu C Y, Homann G, Grissa R, Rentsch D, Zhao W G, Gouveia T, Falgayrat A, Lin R Y, Fantini S, Battaglia C. Adv. Energy Mater., 2022, 12(27): 2200412.
[8]
Guan X Z, Wang A X, Liu S, Li G J, Liang F, Yang Y W, Liu X J, Luo J Y. Small, 2018, 14(37): 1801423.
[9]
Chang C H, Chung S H, Manthiram A. Adv. Sustainable Syst., 2017, 1(1/2): 1600034.
[10]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.
[11]
Zhang H, Eshetu G G, Judez X, Li C M, Rodriguez-Martínez L M, Armand M. Angew. Chem. Int. Ed., 2018, 57(46): 15002.
[12]
Yang P, Gao X W, Tian X L, Shu C Y, Yi Y K, Liu P, Wang T, Qu L, Tian B B, Li M T, Tang W, Yang B L, Goodenough J B. ACS Energy Lett., 2020, 5(5): 1681.
[13]
Jiang T L, He P G, Wang G X, Shen Y, Nan C W, Fan L Z. Adv. Energy Mater., 2020, 10(12): 2070052.
[14]
Yang X F, Jiang M, Gao X J, Bao D N, Sun Q, Holmes N, Duan H, Mukherjee S, Adair K, Zhao C T, Liang J W, Li W H, Li J J, Liu Y, Huang H, Zhang L, Lu S G, Lu Q W, Li R Y, Singh C V, Sun X L. Energy Environ. Sci., 2020, 13(5): 1318.
[15]
Hu P, Chai J C, Duan Y L, Liu Z H, Cui G L, Chen L Q. J. Mater. Chem. A, 2016, 4(26): 10070.
[16]
Wang J, Yang J, Xie J, Xu N. Adv. Mater., 2002, 14(13/14): 963.
[17]
Ahmed M S, Lee S, Agostini M, Jeong M G, Jung H G, Ming J, Sun Y K, Kim J, Hwang J Y. Adv. Sci., 2021, 8(21): 2101123.
[18]
Luo L, Xu Y L, Zhang H, Han X N, Dong H, Xu X, Chen C, Zhang Y, Lin J H. ACS Appl. Mater. Interfaces, 2016, 8(12): 8154.
[19]
Chen Y, Liu S J, Cheng S K, Gao S Y, Chai J C, Jiang Q Y, Liu Z H, Liu X Q, Liu J Y, Xie M, Dai W B. ACS Appl. Energy Mater., 2022, 5(3): 3072.
[20]
Song Z B, Wang L, Yang K, Gong Y, Yang L Y, Liu X H, Pan F. Mater. Today Energy, 2022, 30: 101153.
[21]
Ma Y, Ma J, Cui G L. Energy Storage Mater., 2019, 20: 146.
[22]
Yao M, Ruan Q Q, Yu T H, Zhang H T, Zhang S J. Energy Storage Mater., 2022, 44: 93.
[23]
Tsutsumi H, Doi S, Onimura K, Oishi T. Electrochemistry, 2002, 70(2): 94.
[24]
Gopalan A, Santhosh P, Manesh K, Nho J, Kim S, Hwang C, Lee K. J. Membr. Sci., 2008, 325(2): 683.
[25]
Cho T H, Tanaka M, Onishi H, Kondo Y, Nakamura T, Yamazaki H, Tanase S, Sakai T. J. Power Sources, 2008, 181(1): 155.
[26]
Cho T H, Sakai T, Tanase S, Kimura K, Kondo Y, Tarao T, Tanaka M. Electrochem. Solid-State Lett., 2007, 10(7): A159.
[27]
Yuan X T, Razzaq A A, Chen Y J, Lian Y B, Zhao X H, Peng Y, Deng Z. Chin. Chemical Lett., 2021, 32(2): 890.
[28]
Yuan F, Chen H Z, Yang H Y, Li H Y, Wang M. Mater. Chem. Phys., 2005, 89(2/3): 390.
[29]
Lee Y M, Kim J W, Choi N S, Lee J A, Seol W H, Park J K. J. Power Sources, 2005, 139(1/2): 235.
[30]
Zhang S S. J. Power Sources, 2007, 164(1): 351.
[31]
Wang J Q, Zhang P, Liang B, Liu Y X, Xu T, Wang L F, Cao B, Pan K. ACS Appl. Mater. Interfaces, 2016, 8(9): 6211.
[32]
Woo Y C, Tijing L D, Park M J, Yao M W, Choi J S, Lee S, Kim S H, An K J, Shon H K. Desalination, 2017, 403: 187.
[33]
Ma X J, Kolla P, Yang R D, Wang Z, Zhao Y, Smirnova A L, Fong H. Electrochimica Acta, 2017, 236: 417.
[34]
Lopez J, Pei A, Oh J Y, Wang G J N, Cui Y, Bao Z N. J. Am. Chem. Soc., 2018, 140(37): 11735.
[35]
Abraham K M, Alamgir M. J. Electrochem. Soc., 1990, 137(5): 1657.
[36]
Lee J H, Manuel J, Choi H, Park W H, Ahn J H. Polymer, 2015, 68: 335.
[37]
Gao Y, Sang X, Chen Y F, Li Y, Liu B B, Sheng J L, Feng Y, Li L, Liu H Q, Wang X W, Kuang C X, Zhai Y Y. J. Mater. Sci., 2020, 55(8): 3549.
[38]
Wang A A, Sun Z H, Ning R X, Liang J, Li L, Zhou X S. AIP Adv., 2019, 9(8): 085027.
[39]
Chen W P, Wang X, Liang J Y, Chen Y, Ma W, Zhang S Y. Membranes, 2022, 12(2): 124.
[40]
Chen D X, Wang X, Liang J Y, Zhang Z, Chen W P. Membranes, 2021, 11(4): 267.
[41]
Gong W Z, Zhang Z, Wei S Y, Ruan S L, Shen C Y, Turng L S. J. Electrochem. Soc., 2020, 167(2): 020509.
[42]
Yusuf A, Avvaru V S, Dirican M, Sun C C, Wang D Y. Appl. Mater. Today, 2020, 20: 100675.
[43]
Kang S H, Jang J K, Jeong H Y, So S, Hong S K, Hong Y T, Yoon S J, Yu D M. ACS Appl. Energy Mater., 2022, 5(2): 2452.
[44]
Hu M F, Ma Q Y, Yuan Y, Pan Y K, Chen M Q, Zhang Y Y, Long D H. Chem. Eng. J., 2020, 388: 124258.
[45]
Zhang L P, Feng G H, Li X L, Cui S Z, Ying S W, Feng X M, Mi L W, Chen W H. J. Membr. Sci., 2019, 577: 137.
[46]
Du M C, Peng Z H, Long X, Huang Z J, Lin Z W, Yang J H, Ding K, Chen L Y, Hong X J, Cai Y P, Zheng Q F. Nano Lett., 2022, 22(12): 4861.
[47]
Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X W. Energy Environ. Sci., 2014, 7(12): 3857.
[48]
Zhang R, Li N W, Cheng X B, Yin Y X, Zhang Q, Guo Y G. Adv. Sci., 2017, 4(3): 1600445.
[49]
Cheng X B, Zhang R, Zhao C Z, Wei F, Zhang J G, Zhang Q. Adv. Sci., 2016, 3(3): 1500213.
[50]
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem. Rev., 2017, 117(15): 10403.
[51]
Zhang J, Zhou M S, Shi J Y, Zhao Y F, Wen X Y, Su C C, Wu J Z, Guo J C. Nano Energy, 2021, 88: 106298.
[52]
Xu H Y, Li Q, Pan H Y, Qiu J L, Cao W Z, Yu X Q, Li H. Chin. Phys. B, 2019, 28(7): 078202.
[53]
Xu K. Chem. Rev., 2014, 114(23): 11503.
[54]
Wang C, Sun X L, Yang L, Song D P, Wu Y, Ohsaka T, Matsumoto F, Wu J F. Adv. Mater. Interfaces, 2021, 8(1): 2001698.
[55]
Bae J, Qian Y M, Li Y T, Zhou X Y, Goodenough J B, Yu G H. Energy Environ. Sci., 2019, 12(11): 3319.
[56]
Shi P, Liu Z Y, Zhang X Q, Chen X, Yao N, Xie J, Jin C B, Zhan Y X, Ye G, Huang J Q, Ifan E L S, Maria-Magdalena T, Zhang Q. J. Energy Chem., 2022, 64: 172.
[57]
Wang D D, Liu H X, Liu F, Ma G R, Yang J, Gu X D, Zhou M, Chen Z. Nano Lett., 2021, 21(11): 4757.
[58]
Manuel Stephan A. Eur. Polym. J., 2006, 42(1): 21.
[59]
Cheng X L, Pan J, Zhao Y, Liao M, Peng H S. Adv. Energy Mater., 2018, 8(7): 1702184.
[60]
Yang Q, Deng N P, Cheng B W, Kang W M. Progress in Chemistry, 2021, 33(12): 2270.
(杨琪, 邓南平, 程博闻, 康卫民. 化学进展, 2021, 33(12): 2270.).
[61]
Wang S H, Kuo P L, Hsieh C T, Teng H. ACS Appl. Mater. Interfaces, 2014, 6(21): 19360.
[62]
Sun X X, Sun G W, Wang X H. Polymer, 2017, 108: 432.
[63]
Wu Q Y, Liang H Q, Gu L, Yu Y, Huang Y Q, Xu Z K. Polymer, 2016, 107: 54.
[64]
He C, Liu J, Li J, Zhu F, Zhao H. J. Memb. Sci., 2018, 560: 30.
[65]
Li S S, Ren W H, Huang Y, Zhou Q G, Luo C, Li Z Z, Li X, Wang M S, Cao H J. Electrochimica Acta, 2021, 391: 138950.
[66]
Wang X L, Hao X J, Xia Y, Liang Y F, Xia X H, Tu J P. J. Membr. Sci., 2019, 582: 37.
[67]
Zhou D, He Y B, Liu R L, Liu M, Du H D, Li B H, Cai Q, Yang Q H, Kang F Y. Adv. Energy Mater., 2015, 5(15): 1500353.
[68]
Jeon Y M, Kim S, Lee M, Lee W B, Park J H. Adv. Energy Mater., 2020, 10(47): 2003114.
[69]
Zhang X, Zhao S, Fan W, Wang J, Li C. Electrochim. Acta, 2019, 301: 304.
[70]
Wang X Y, Fang Y J, Yan X D, Liu S L, Zhao X Y, Zhang L Z. Polymer, 2021, 230: 124038.
[71]
Cheng H, Yan C Y, Orenstein R, Dirican M, Wei S Z, Subjalearndee N, Zhang X W. Adv. Fiber Mater., 2022, 4(3): 532.
[72]
Yang X F, Adair K R, Gao X J, Sun X L. Energy Environ. Sci., 2021, 14(2): 643.
[73]
Zheng Y, Yao Y Z, Ou J H, Li M, Luo D, Dou H Z, Li Z Q, Amine K, Yu A P, Chen Z W. Chem. Soc. Rev., 2020, 49(23): 8790.
[74]
Tang W J, Tang S, Zhang C J, Ma Q T, Xiang Q, Yang Y W, Luo J Y. Adv. Energy Mater., 2018, 8(24): 1800866.
[75]
Zhang T F, He W J, Zhang W, Wang T, Li P, Sun Z M, Yu X B. Chem. Sci., 2020, 11(33): 8686.
[76]
Barbosa J, Dias J, Lanceros-MÉndez S, Costa C. Membranes, 2018, 8(3): 45.
[77]
Oudenhoven J F M, Baggetto L, Notten P H L. Adv. Energy Mater., 2011, 1(1): 10.
[78]
Li J Z, Huang X J, Chen L Q. J. Electrochem. Soc., 2000, 147(7): 2653.
[79]
Zhang J X, Zhao N, Zhang M, Li Y Q, Chu P K, Guo X X, Di Z F, Wang X, Li H. Nano Energy, 2016, 28: 447.
[80]
Yue L P, Ma J, Zhang J J, Zhao J W, Dong S M, Liu Z H, Cui G L, Chen L Q. Energy Storage Mater., 2016, 5: 139.
[81]
Yang T, Zheng J, Cheng Q, Hu Y Y, Chan C K. ACS Appl. Mater. Interfaces, 2017, 9(26): 21773.
[82]
Tran H K, Wu Y S, Chien W C, Wu S H, Jose R, Lue S J, Yang C C. ACS Appl. Energy Mater., 2020, 3(11): 11024.
[83]
Hu S, Du L L, Zhang G, Zou W Y, Zhu Z, Xu L, Mai L Q. ACS Appl. Mater. Interfaces, 2021, 13(11): 13183.
[84]
Zhang X, Xu B Q, Lin Y H, Shen Y, Li L L, Nan C W. Solid State Ion., 2018, 327: 32.
[85]
Jia W S, Li Z L, Wu Z R, Wang L P, Wu B, Wang Y H, Cao Y, Li J Z. Solid State Ion., 2018, 315: 7.
[86]
Gao H C, Grundish N S, Zhao Y J, Zhou A J, Goodenough J B. Energy Mater. Adv., 2021, 2021: 1932952.
[87]
Liu L, Cai Y H, Zhao Z K, Ma C W, Li C L, Mu D B. Mater. Chem. Front., 2022, 6(4): 430.
[88]
Liu C H, Sacci R L, Sahore R, Veith G M, Dudney N J, Chen X C. J. Power Sources, 2022, 527: 231165.
[89]
Ferry A, Edman L, Forsyth M, MacFarlane D R, Sun J Z. J. Appl. Phys., 1999, 86(4): 2346.
[90]
Wu B, Wang L P, Li Z L, Zhao M J, Chen K H, Liu S H, Pu Y Q, Li J Z. J. Electrochem. Soc., 2016, 163(10): A2248.
[91]
Chen Y T, Chuang Y C, Su J H, Yu H C, Chen-Yang Y W. J. Power Sources, 2011, 196(5): 2802.
[92]
Pignanelli F, Romero M, Esteves M, Fernández-Werner L, Faccio R, Mombrú A W. Ionics, 2019, 25(6): 2607.
[93]
Liu W, Liu N, Sun J, Hsu P C, Li Y Z, Lee H W, Cui Y. Nano Lett., 2015, 15(4): 2740.
[94]
Yang Y N, Jiang F L, Li Y Q, Wang Z X, Zhang T. Angewandte Chemie Int. Ed., 2021, 60(45): 23922.
[95]
Chen W P, Duan H, Shi J L, Qian Y M, Wan J, Zhang X D, Sheng H, Guan B, Wen R, Yin Y X, Xin S, Guo Y G, Wan L J. J. Am. Chem. Soc., 2021, 143(15): 5717.
[96]
Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Adv. Mater., 2019, 31(12): 1807789.
[97]
Liang J Y, Zeng X X, Zhang X D, Zuo T T, Yan M, Yin Y X, Shi J L, Wu X W, Guo Y G, Wan L J. J. Am. Chem. Soc., 2019, 141(23): 9165.
[98]
Mu S, Huang W L, Sun W H, Zhao N, Jia M Y, Bi Z J, Guo X X. J. Energy Chem., 2021, 60: 162.
[99]
Li B Y, Su Q M, Liu C K, Wang Q S, Zhang M, Ding S K, Du G H, Xu B S. J. Power Sources, 2021, 496: 229835.
[100]
He F, Tang W J, Zhang X Y, Deng L J, Luo J Y. Adv. Mater., 2021, 33(45): 2105329.
[101]
Li D, Chen L, Wang T S, Fan L Z. ACS Appl. Mater. Interfaces, 2018, 10(8): 7069.
[102]
Gao L, Li J X, Sarmad B, Cheng B W, Kang W M, Deng N P. Nanoscale, 2020, 12(26): 14279.
[103]
Shi P R, Ma J B, Huang Y F, Fu W B, Li S, Wang S W, Zhang D F, He Y B, Kang F Y. J. Mater. Chem. A, 2021, 9(25): 14344.
[104]
Ma Y X, Wan J Y, Yang Y F, Ye Y S, Xiao X, Boyle D T, Burke W, Huang Z J, Chen H, Cui Y, Yu Z A, Oyakhire S T, Cui Y. Adv. Energy Mater., 2022, 12(15): 2103720.
[105]
Zhang Z S, Zhang L, Liu Y Y, Yang T T, Wang Z W, Yan X L, Yu C. J. Mater. Chem. A, 2019, 7(40): 23173.
[106]
Zhang D C, Xu X J, Ji S M, Wang Z S, Liu Z B, Shen J D, Hu R Z, Liu J, Zhu M. ACS Appl. Mater. Interfaces, 2020, 12(19): 21586.

Funding

National Natural Science Foundation of China(21975284)
PDF(28259 KB)

Accesses

Citation

Detail

Sections
Recommended

/