Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization

Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang

Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 360-374.

PDF(11183 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11183 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 360-374. DOI: 10.7536/PC220922
Review

Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization

Author information +
History +

Abstract

As the largest supply end and demand end in daily production respectively, the conversion, storage and utilization of electric energy and thermal energy play an important role in energy systems. Therefore, it is of great significance to develop high-efficiency materials for electro-thermal conversion and storage, especially facing today’s energy crises, environmental pollution and extreme climates. Among heat storage materials, phase change materials (PCMs) own unique advantages because of their high latent heat storage density and constant temperature during heat absorption and release. However, the low intrinsic conductivity of most PCMs does not match the large power requirements of current energy storage systems. This issue can be effectively improved by combining PCMs with conductive materials to obtain electrically heatable PCM composites. In this article, the latest research progress of electro-thermal conversion PCMs from three aspects of the functional mechanism, affecting factors and applications are systematically reviewed. Moreover, PCMs composited with conductive fillers, conductive framework and serving as conductive polymers are summarized and compared critically. Finally, this article points out the potential direction of future research and emphasizes the key points of this field.

Key words

phase change materials / conductive material / package / oriented structure / electrothermal conversion efficiency

Cite this article

Download Citations
Jiang Haoyang , Xiong Feng , Qin Mulin , et al . Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization[J]. Progress in Chemistry. 2023, 35(3): 360-374 https://doi.org/10.7536/PC220922

References

[1]
Sundararajan S, Samui A B, Kulkarni P S. J. Mater. Chem. A, 2017, 5(35): 18379.
[2]
Zhang Y A, Umair M M, Zhang S F, Tang B T. J. Mater. Chem. A, 2019, 7(39): 22218.
[3]
Henry A, Prasher R, Majumdar A. Nat. Energy, 2020, 5(9): 635.
[4]
Su W G, Darkwa J, Kokogiannakis G. Renew. Sustain. Energy Rev., 2015, 48: 373.
[5]
Aftab W, Usman A, Shi J M, Yuan K J, Qin M L, Zou R Q. Energy Environ. Sci., 2021, 14(8): 4268.
[6]
Aydin D, Casey S P, Riffat S. Renew. Sustain. Energy Rev., 2015, 41: 356.
[7]
Hyun D C, Levinson N S, Jeong U, Xia Y N. Angew. Chem. Int. Ed., 2014, 53(15): 3780.
[8]
Liu W, Zhang X L, Ji J, Wu Y F, Liu L. Energy Technol., 2021, 9(7): 2100169.
[9]
Tahan Latibari S, Sadrameli S M. Sol. Energy, 2018, 170: 1130.
[10]
Kalidasan B, Pandey A K, Shahabuddin S, Samykano M, Thirugnanasambandam M, Saidur R. J. Energy Storage, 2020, 27: 101118.
[11]
Wang W T, Tang B T, Ju B Z, Gao Z M, Xiu J H, Zhang S F. J. Mater. Chem. A, 2017, 5(3): 958.
[12]
Wang W T, Fan X Q, Qiu J J, Umair M M, Ju B Z, Zhang S F, Tang B T. Chem. Eng. J., 2018, 358.
[13]
Fan X Q, Xiao J Q, Wang W T, Zhang Y A, Zhang S F, Tang B T. Polymers, 2018, 10(6): 585.
[14]
Horsfield A P, Bowler D R, Fisher A J, Todorov T N, Montgomery M J. J. Phys.: Condens. Matter, 2004, 16(21): 3609.
[15]
Zhang H Q, Sun Q R, Yuan Y P, Zhang Z J, Cao X L. Chem. Eng. J., 2018, 336: 342.
[16]
Zhang K, Han B G, Yu X. Energy Convers. Manag., 2012, 64: 62.
[17]
Cao R R, Chen S, Wang Y Z, Han N, Liu H H, Zhang X X. Carbon, 2019, 149: 263.
[18]
Sun Q R, Zhang N, Zhang H Q, Yu X P, Ding Y L, Yuan Y P. Renew. Energy, 2020, 145: 2629.
[19]
Sun Q R, Zhang N, Yu X P, Ju F L, Szilágyi I M, Yuan Y P. Int. J. Energy Res., 2021, 45(5): 7675.
[20]
Tabassum H, Huang X Y, Chen R J, Zou R Q. J. Materiomics, 2015, 1(3): 229.
[21]
Li C C, Zhang B, Liu Q X. J. Energy Storage, 2020, 29: 101339.
[22]
Frᶏc M, PichÓr W, Szołdra P, Szudek W. Constr. Build. Mater., 2021, 275: 122126.
[23]
Luo M Y, Song J Q, Ling Z Y, Zhang Z G, Fang X M. Mater. Today Energy, 2021, 20: 100652.
[24]
Cao R R, Wang Y Z, Chen S, Han N, Liu H H, Zhang X X. ACS Appl. Mater. Interfaces, 2019, 11(9): 8982.
[25]
Guo X F, Liu C, Li N, Zhang S D, Wang Z Y. Ind. Eng. Chem. Res., 2018, 57(46): 15697.
[26]
Zheng Z L, Jin J D, Xu G K, Zou J L, Wais U, Beckett A, Heil T, Higgins S, Guan L H, Wang Y, Shchukin D. ACS Nano, 2016, 10(4): 4695.
[27]
Yu C B, Youn J R, Song Y S. Fibers Polym., 2019, 20(3): 545.
[28]
Wu J J, Wang M X, Dong L, Shi J, Ohyama M, Kohsaka Y, Zhu C H, Morikawa H. ACS Nano, 2022, 16(8): 12801.
[29]
Niu Z X, Qi S Y, Shuaib S S A, Yuan W Z. Compos. B Eng., 2022, 228: 109431.
[30]
Yu L X, Qin X H, Ke G Z, Tang J N, Wang Y. Compos. Commun., 2022, 32: 101152.
[31]
Lu X, Huang H W, Zhang X Y, Lin P C, Huang J T, Sheng X X, Zhang L, Qu J P. Compos. B Eng., 2019, 177: 107372.
[32]
Janas D, Koziol K K. Nanoscale, 2014, 6(6): 3037.
[33]
Wu Y P, Wang T. Energy Convers. Manag., 2015, 101: 164.
[34]
Nat. Nanotechnol. 2010, 5: 755.
[35]
Wang J F, Shen M M, Liu Z X, Wang W J. Nano Energy, 2022, 97: 107177.
[36]
Maleki M, Karimian H, Shokouhimehr M, Ahmadi R, Valanezhad A, Beitollahi A. Chem. Eng. J., 2019, 362: 469.
[37]
Wu W H, Huang X Y, Yao R M, Chen R J, Li K, Zou R Q. Acta Phys. Chim. Sin. 2017, 33(1): 255.
[38]
Umair M M, Zhang Y A, Tehrim A, Zhang S F, Tang B T. Ind. Eng. Chem. Res., 2020, 59(4): 1393.
[39]
Li Y Q, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K. J. Mater. Chem. A, 2014, 2(21): 7759.
[40]
Umair M M, Zhang Y A, Zhang S F, Jin X, Tang B T. J. Mater. Chem. A, 2019, 7(46): 26385.
[41]
Chen L J, Zou R Q, Xia W, Liu Z P, Shang Y Y, Zhu J L, Wang Y X, Lin J H, Xia D G, Cao A Y. ACS Nano, 2012, 6(12): 10884.
[42]
Aftab W, Mahmood A, Guo W H, Yousaf M, Tabassum H, Huang X Y, Liang Z B, Cao A Y, Zou R Q. Energy Storage Mater., 2019, 20: 401.
[43]
Liu Z P, Zou R Q, Lin Z Q, Gui X C, Chen R J, Lin J H, Shang Y Y, Cao A Y. Nano Lett., 2013, 13(9): 4028.
[44]
Chen R J, Huang X Y, Deng W B, Zheng R Z, Aftab W, Shi J M, Xie D L, Zou R Q, Mei Y. Appl. Energy, 2020, 260: 114320.
[45]
Liu M Y, Zhang X G, Liu X J, Wu X W, Ye X J, Qiao J X, Sun Z H, Zhu X, Huang Z H. ACS Sustainable Chem. Eng., 2022, 10(24): 8051.
[46]
Chen R J, Yao R M, Xia W, Zou R Q. Appl. Energy, 2015, 152: 183.
[47]
Wu W H, Huang X Y, Li K, Yao R M, Chen R J, Zou R Q. Appl. Energy, 2017, 190: 474.
[48]
Wu W H, Yao R M, Huang X Y, Chen R J, Li K, Gao S, Zou R Q. Mater. Chem. Front., 2017, 1(7): 1430.
[49]
Wu M Q, Li T X, Wang P F, Wu S, Wang R Z, Lin J. Small, 2022, 18(9): 2105647.
[50]
Li T X, Wu M Q, Wu S, Xiang S Z, Xu J X, Chao J W, Yan T S, Deng T, Wang R Z. Nano Energy, 2021, 89: 106338.
[51]
Umair M M, Zhang Y A, Zhang S F, Jin X, Tang B T. Sustain. Energy Fuels, 2020, 4(8): 4285.
[52]
Yang G Q, Zhao L Y, Shen C F, Mao Z P, Xu H, Feng X L, Wang B J, Sui X F. Sol. Energy Mater. Sol. Cells, 2020, 209: 110441.
[53]
Ye S B, Zhang Q L, Hu D D, Feng J C. J. Mater. Chem. A, 2015, 3(7): 4018.
[54]
Li G Y, Zhang X T, Wang J, Fang J H. J. Mater. Chem. A, 2016, 4(43): 17042.
[55]
Zhou Y, Wang X J, Liu X D, Sheng D K, Ji F C, Dong L, Xu S B, Wu H H, Yang Y M. Sol. Energy Mater. Sol. Cells, 2019, 193: 13.
[56]
Zhou Y, Wang X J, Liu X D, Sheng D K, Ji F C, Dong L, Xu S B, Wu H H, Yang Y M. Carbon, 2019, 142: 558.
[57]
Cai Y X, Zhang N, Yuan Y P, Zhong W, Yu N Y. Sol. Energy Mater. Sol. Cells, 2021, 233: 111390.
[58]
Wei X, Xue F, Qi X D, Yang J H, Zhou Z W, Yuan Y P, Wang Y. Appl. Energy, 2019, 236: 70.
[59]
Wu H Y, Deng S, Shao Y W, Yang J H, Qi X D, Wang Y. ACS Appl. Mater. Interfaces, 2019, 11(50): 46851.
[60]
Wang M, Zhang C, Wang J Z, Wang Y, Yu F Q. J. Energy Storage, 2022, 52: 104905.
[61]
Li A, Dong C, Dong W J, Yuan F G, Gao H Y, Chen X, Chen X B, Wang G. Adv. Electron. Mater., 2020, 6(6): 1901428.
[62]
Zhang L, An L, Wang Y H, Lee A, Schuman Y, Ural A, Fleischer A S, Feng G. Chem. Eng. J., 2019, 373: 857.
[63]
Cao X Y, Yang L J, Cui J, Feng Q B, Wang C J, Zhu Z Q, Sun H X, Li J Y, Liang W D, Li A. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 651: 129516.
[64]
Jin X Z, Yang Z Y, Huang C H, Yang J H, Wang Y. Chem. Eng. J., 2022, 448: 137599.
[65]
Paul J, Pandey A K, Mishra Y N, Said Z, Mishra Y K, Ma Z J, Jacob J, Kadirgama K, Samykano M, Tyagi V V. Renew. Sustain. Energy Rev., 2022, 161: 112321.
[66]
Inagaki M, Qiu J S, Guo Q G. Carbon, 2015, 87: 128.
[67]
Kim J H, Jeong E, Lee Y S. J. Ind. Eng. Chem. 2015, 32: 21.
[68]
Wu S, Li T X, Tong Z, Chao J W, Zhai T Y, Xu J X, Yan T S, Wu M Q, Xu Z Y, Bao H, Deng T, Wang R Z. Adv. Mater., 2019, 31(49): 1905099.
[69]
Kashyap S, Kabra S, Kandasubramanian B. J. Mater. Sci., 2020, 55(10): 4127.
[70]
Aftab W, Huang X Y, Wu W H, Liang Z B, Mahmood A, Zou R Q. Energy Environ. Sci., 2018, 11(6): 1392.
[71]
Chen X, Gao H Y, Yang M, Xing L W, Dong W J, Li A, Zheng H Y, Wang G. Energy Storage Mater., 2019, 18: 349.
[72]
Chen X, Gao H Y, Tang Z D, Wang G. Cell Rep. Phys. Sci., 2020, 1(10): 100218.
[73]
Cheng L Q, Kong L B, Zhang X, Kong X F. Sol. Energy Mater. Sol. Cells, 2022, 235: 111461.
[74]
Kong L B, Wang Z Y, Kong X F, Wang L, Ji Z Y, Wang X M, Zhang X. ACS Appl. Mater. Interfaces, 2021, 13(25): 29965.
[75]
Chen L Y, Lv J C, Ding L, Yang G Q, Mao Z P, Wang B J, Feng X L, Zapotoczny S, Sui X F. Chem. Eng. J., 2020, 400: 125950.
[76]
Yun H R, Li C L, Zhang X X. e-Polymers, 2019, 19(1): 519.
[77]
Gao M H, Feng W, Qi X D, Wang Y. Chin. J. Polym. Sci., 2022, 40(11): 1380.
[78]
Huang Y, Li H F, Wang Z F, Zhu M S, Pei Z X, Xue Q, Huang Y, Zhi C Y. Nano Energy, 2016, 22: 422.
[79]
Yan Q S, Du X X, Liu Y, Zhou X, Xin B J. ACS Appl. Mater. Interfaces, 2022, 14(21): 24820.
[80]
Lv J C, Zhou P W, Zhang L P, Zhong Y, Sui X F, Wang B J, Chen Z Z, Xu H, Mao Z P. Chem. Eng. J., 2019, 361: 897.

Funding

Youth Scientific Research Fund of Army Logistics Academy of PLA China(LQ-QN-202117)
National Key Research and Development Program of China(2020YFA0210701)
PDF(11183 KB)

Accesses

Citation

Detail

Sections
Recommended

/