Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone

Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu

Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 593-605.

PDF(4257 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4257 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 593-605. DOI: 10.7536/PC220928
Review

Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone

Author information +
History +

Abstract

Levulinic acid is important biomass-derived compounds, and catalytic conversion of them to γ-valerolactone (GVL) over heterogeneous bifunctional catalysts has become a hot focus in the field of biorefining. In this paper, the direct hydrogenation of levulinic acid and its esters to GVL catalyzed by noble and non-noble metal bifunctional catalysts, and the transfer hydrogenation of levulinic acid and its esters to GVL catalyzed by the bifunctional catalysts, such as metal-supported catalysts, modified zeolite, and mixed metal oxides, are reviewed. Conversion of levulinic acid and its esters to GVL over bifunctional catalysts involves two steps, including hydrogenation of carbonyl group and subsequent lactonization reaction. In addition, the importance of active sites of various bifunctional catalysts in conversion of levulinic acid and its esters is studied in this paper, and the advantages and problems of different catalysts during the conversion of levulinic acid/esters are discussed. Finally, the development of bifunctional catalysts and the synthesis of GVL in the future are prospected.

Key words

levulinic acid / γ-valerolactone / heterogeneous bifunctional catalysts / hydrogenation / lactonization

Cite this article

Download Citations
Yuewen Shao , Qingyang Li , Xinyi Dong , et al . Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone[J]. Progress in Chemistry. 2023, 35(4): 593-605 https://doi.org/10.7536/PC220928

References

[1]
Yang H P, Yan R, Chen H P, Lee D H, Zheng C G. Fuel, 2007, 86(12/13): 1781.
[2]
Huang X, Ren J, Ran J Y, Qin C L, Yang Z Q, Cao J P. Fuel Process. Technol., 2022, 229: 107175.
[3]
Jing Y X, Guo Y, Xia Q N, Liu X H, Wang Y Q. Chem, 2019, 5(10): 2520.
[4]
Yan K, Jarvis C, Gu J, Yan Y. Renew. Sustain. Energy Rev., 2015, 51: 986.
[5]
Hu X, Jiang S J, Wu L P, Wang S, Li C Z. Chem. Commun., 2017, 53(20): 2938.
[6]
Gao W R, Wu G, Zhu X, Asif Akhtar M, Lin G Y, Hu X, Huang Y, Zhang S, Zhang H. Bioresour. Technol., 2022, 347: 126436.
[7]
Hu X, Li C Z. Green Chem., 2011, 13(7): 1676.
[8]
Wang J H, Cui H Y, Wang J G, Li Z H, Wang M, Yi W M. Chem. Eng. J., 2021, 415: 128922.
[9]
Hu X, Song Y, Wu L P, Gholizadeh M, Li C Z. ACS Sustainable Chem. Eng., 2013, 1(12): 1593.
[10]
Wang J H, Xiang Z Y, Huang Z X, Xu Q, Yin D L. Front. Chem., 2022, 10: 959572.
[11]
Liguori F, Moreno-Marrodan C, Barbaro P. ACS Catal., 2015, 5(3): 1882.
[12]
Liu Y X, Liu X X, Li M R, Meng Y, Li J, Zhang Z H, Zhang H. Front. Chem., 2021, 9: 812331.
[13]
Yu Z H, Lu X B, Xiong J, Ji N. ChemSusChem, 2019, 12(17): 3915.
[14]
Alonso D M, Wettstein S G, Dumesic J A. Green Chem., 2013, 15(3): 584.
[15]
Dutta S, Yu I K M, Tsang D C W, Ng Y H, Ok Y S, Sherwood J, Clark J H. Chem. Eng. J., 2019, 372: 992.
[16]
He J, Li H, Xu Y F, Yang S. Renew. Energy, 2020, 146: 359.
[17]
Winoto H P, Ahn B S, Jae J. J. Ind. Eng. Chem., 2016, 40: 62.
[18]
Li W K, Cai Z, Li H, Shen Y, Zhu Y Q, Li H C, Zhang X B, Wang F M. Mol. Catal., 2019, 472: 17.
[19]
Winoto H P, Ali Fikri Z, Ha J M, Park Y K, Lee H, Suh D J, Jae J. Appl. Catal. B Environ., 2019, 241: 588.
[20]
Chen B F, Li F B, Huang Z J, Yuan G Q. J. Energy Chem., 2016, 25(5): 888.
[21]
Zhu S H, Cen Y L, Guo J, Chai J C, Wang J G, Fan W B. Green Chem., 2016, 18(20): 5667.
[22]
Wang Y, Rong Z M, Wang Y, Wang T, Du Q Q, Wang Y, Qu J P. ACS Sustainable Chem. Eng., 2017, 5(2): 1538.
[23]
Galletti A M R, Antonetti C, De Luise V, Martinelli M. Green Chem., 2012, 14(3): 688.
[24]
Villa A, Schiavoni M, Chan-Thaw C E, Fulvio P F, Mayes R T, Dai S, More K L, Veith G M, Prati L. ChemSusChem, 2015, 8(15): 2520.
[25]
Pan J P, Xu Q H, Fang L, Tu G M, Fu Y H, Chen G H, Zhang F M, Zhu W D. Catal. Commun., 2019, 128: 105710.
[26]
Meng Z, Liu Y, Yang G X, Cao Y H, Wang H J, Peng F, Liu P F, Yu H. ACS Sustainable Chem. Eng., 2019, 7(19): 16501.
[27]
Moreno-Marrodan C, Barbaro P. Green Chem., 2014, 16(7): 3434.
[28]
Li W L, Li F, Chen J W, Betancourt L E, Tu C Y, Liao M J, Ning X, Zheng J J, Li R F. Ind. Eng. Chem. Res., 2020, 59(39): 17338.
[29]
Li W L, Li F, Ning X, Deng K X, Chen J W, Zheng J J, Li R F. Carbon Resour. Convers., 2022, 5(3): 185.
[30]
Kuwahara Y, Magatani Y, Yamashita H. Catal. Today, 2015, 258: 262.
[31]
Lu Y W, Wang Y X, Wang Y H, Cao Q E, Xie X G, Fang W H. Mol. Catal., 2020, 493: 111097.
[32]
Mani M, Mariyaselvakumar M, Samikannu A, Panda A B, Konwar L J, Mikkola J P. Appl. Catal. A Gen., 2022, 643: 118744.
[33]
Ruppert A M, Grams J, Jędrzejczyk M, Matras-Michalska J, Keller N, Ostojska K, Sautet P. ChemSusChem, 2015, 8(9): 1497.
[34]
Guo Y Y, Li Y L, Chen J Z, Chen L M. Catal. Lett., 2016, 146(10): 2041.
[35]
Yao Y R, Wang Z Q, Zhao S, Wang D H, Wu Z J, Zhang M H. Catal. Today, 2014, 234: 245.
[36]
Sudhakar M, Lakshmi Kantam M, Swarna Jaya V, Kishore R, Ramanujachary K V, Venugopal A. Catal. Commun., 2014, 50: 101.
[37]
Zhang Y, Chen C, Gong W B, Song J Y, Zhang H M, Zhang Y X, Wang G Z, Zhao H J. Catal. Commun., 2017, 93: 10.
[38]
Gupta N, Dimitratos N, Su D S, Villa A. Energy Technol., 2019, 7(2): 269.
[39]
Liu Y, Xin Q H, Yin D F, Liu S W, Li L, Xie C X, Yu S T. Catal. Lett., 2020, 150(12): 3437.
[40]
Yan K, Lafleur T, Jarvis C, Wu G S. J. Clean. Prod., 2014, 72: 230.
[41]
Vu H T, Harth F M, Goepel M, Linares N, García-Martínez J, Gläser R. Chem. Eng. J., 2022, 430: 132763.
[42]
Jiang L, Xu G Y, Fu Y. Green Chem., 2021, 23(18): 7065.
[43]
Balla P, Seelam P K, Balaga R, Rajesh R, Perupogu V, Liang T X. J. Environ. Chem. Eng., 2021, 9(6): 106530.
[44]
Xu H, Hu D, Yi Z X, Wu Z T, Zhang M, Yan K. ACS Appl. Energy Mater., 2019, 2(10): 6979.
[45]
Pinto B P, Fortuna A L L, Cardoso C P, Mota C J A. Catal. Lett., 2017, 147(3): 751.
[46]
Popova M, Djinović P, Ristić A, Lazarova H, Dražić G, Pintar A, Balu A M, Novak Tušar N. Front. Chem., 2018, 6: 285.
[47]
Hengst K, Schubert M, Carvalho H W P, Lu C B, Kleist W, Grunwaldt J D. Appl. Catal. A Gen., 2015, 502: 18.
[48]
Jiang K, Sheng D, Zhang Z H, Fu J, Hou Z Y, Lu X Y. Catal. Today, 2016, 274: 55.
[49]
Gundekari S, Srinivasan K. Catal. Lett., 2019, 149(1): 215.
[50]
Shao Y W, Sun K, Fan M J, Wang J Z, Gao G M, Zhang L J, Zhang S, Hu X. Chem. Eng. Sci., 2022, 248: 117258.
[51]
Liang B F, Liu C, Jing F L, Luo S Z. J. Environ. Chem. Eng., 2022, 10(3): 107760.
[52]
Gan L J, Deng C Q, Deng J. Green Chem., 2022, 24(8): 3143.
[53]
Wang D W, Luo M Y, Yue L H, Wei J, Zhang X Y, Cai J J. Fuel, 2022, 329: 125364.
[54]
Barla M K, Velagala R R, Minpoor S, Madduluri V R, Srinivasu P. J. Hazard. Mater., 2021, 405: 123335.
[55]
Murugesan K, Alshammari A S, Sohail M, Jagadeesh R V. ACS Sustainable Chem. Eng., 2019, 7(17): 14756.
[56]
Novodárszki G, Solt H E, Valyon J, LÓnyi F, HancsÓk J, Deka D, Tuba R, Mihályi M R. Catal. Sci. Technol., 2019, 9(9): 2291.
[57]
Shao Y W, Ba S J, Sun K, Gao G M, Fan M J, Wang J Z, Fan H L, Zhang L J, Hu X. Chem. Eng. J., 2022, 429: 132433.
[58]
Li J F, Li M J, Zhang C X, Liu C L, Yang R Z, Dong W S. J. Catal., 2020, 381: 163.
[59]
Shao Y W, Sun K, Li Q Y, Liu Q H, Zhang S, Liu Q, Hu G Z, Hu X. Green Chem., 2019, 21(16): 4499.
[60]
Mitta H, Perupogu V, Boddula R, Ginjupalli S R, Inamuddin, Asiri A M. Int. J. Hydrog. Energy, 2020, 45(50): 26445.
[61]
Zhang R H, Ma Y B, You F, Peng T, He Z C, Li K N. Int. J. Hydrog. Energy, 2017, 42(40): 25185.
[62]
Zhang J, Chen J Z, Guo Y Y, Chen L M. ACS Sustainable Chem. Eng., 2015, 3(8): 1708.
[63]
Raguindin R Q, Desalegn B Z, Gebresillase M N, Seo J G. Renew. Energy, 2022, 191: 763.
[64]
Xie Z B, Chen B F, Wu H R, Liu M Y, Liu H Z, Zhang J L, Yang G Y, Han B X. Green Chem., 2019, 21(3): 606.
[65]
Li Y F, Lan X C, Liu B Y, Wang T F. J. Ind. Eng. Chem., 2022, 107: 215.
[66]
Cai B, Zhang Y J, Feng J F, Huang C, Ma T Y, Pan H. Renew. Energy, 2021, 177: 652.
[67]
Kuwahara Y, Kaburagi W, Fujitani T. RSC Adv., 2014, 4(86): 45848.
[68]
Chen H, Xu Q, Li H, Liu J, Liu X X, Huang G, Yin D L. Catal. Lett., 2021, 151(2): 538.
[69]
Yu N X, Lu H F, Yang W, Zheng Y X, Hu Q, Liu Y Y, Wu K J, Liang B. Biomass Convers. Biorefinery, 2022,DOI:10.1007/s13399-022-02887-2.
[70]
Yu Z Q, Meng F X, Wang Y, Sun Z C, Liu Y Y, Shi C, Wang W, Wang A J. Ind. Eng. Chem. Res., 2020, 59(16): 7416.
[71]
Sakakibara K, Endo K, Osawa T. Catal. Commun., 2019, 125: 52.
[72]
Gong W B, Chen C, Fan R Y, Zhang H M, Wang G Z, Zhao H J. Fuel, 2018, 231: 165.
[73]
Jori P K, Jadhav V H. Catal. Lett., 2020, 150(7): 2038.
[74]
Wang J, Jaenicke S, Chuah G K. RSC Adv., 2014, 4(26): 13481.
[75]
LÓpez-Aguado C, del Monte D M, Paniagua M, Morales G, Melero J A. Ind. Eng. Chem. Res., 2022, 61(16): 5547.
[76]
Xu S D, Yu D Q, Ye T, Tian P P. RSC Adv., 2017, 7(2): 1026.
[77]
Wan F F, Yang B, Zhu J K, Jiang D B, Zhang H H, Zhang Q, Chen S N, Zhang C, Liu Y C, Fu Z H. Green Chem., 2021, 23(9): 3428.
[78]
Kuwahara Y, Kaburagi W, Osada Y, Fujitani T, Yamashita H. Catal. Today, 2017, 281: 418.
[79]
Li H, Fang Z, Yang S. ACS Sustainable Chem. Eng., 2016, 4(1): 236.
[80]
Mei C A, Dumesic J A. Chem. Commun., 2011, 47(44): 12233.
[81]
Gu J, Zhang J, Wang Y Z, Li D N, Huang H Y, Yuan H R, Chen Y. Ind. Crops Prod., 2020, 145: 112133.
[82]
Wang J Y, Zhang G Y, Liu M Y, Xia Q, Yu X, Zhang W X, Shen J, Yang C H, Jin X. Chem. Eng. Sci., 2020, 222: 115721.
[83]
Yun W C, Yang M T, Lin K Y A. J. Colloid Interface Sci., 2019, 543: 52.
[84]
Xiao Z H, Zhou H C, Hao J M, Hong H L, Song Y M, He R X, Zhi K D, Liu Q S. Fuel, 2017, 193: 322.
[85]
Kuwahara Y, Kango H, Yamashita H. ACS Sustainable Chem. Eng., 2017, 5(1): 1141.
[86]
Li J, Zhao S H, Li Z, Liu D, Chi Y N, Hu C W. Inorg. Chem., 2021, 60(11): 7785.
[87]
Shao Y W, Sun K, Zhang L J, Xu Q, Zhang Z M, Li Q Y, Zhang S, Wang Y, Liu Q, Hu X. Green Chem., 2019, 21(24): 6634.
[88]
Cao J P, Xie T, Zhao X Y, Zhu C, Jiang W, Zhao M, Zhao Y P, Wei X Y. Fuel, 2021, 284: 119027.
[89]
Osatiashtiani A, Lee A F, Wilson K. J. Chem. Technol. Biotechnol, 2017, 92(6): 1125.

Funding

National Natural Science Foundation of China(51906084)
Program for Taishan Scholars of Shandong Province Government
R&D program of Shandong Basan Graphite New Material Plant and Innovation
Entrepreneurship Training Program for College Students of Shandong Province(S202110427093)
PDF(4257 KB)

Accesses

Citation

Detail

Sections
Recommended

/