Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries

Zhendong Liu, Jiajie Pan, Quanbing Liu

Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 577-592.

PDF(10142 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10142 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 577-592. DOI: 10.7536/PC220937
Review

Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries

Author information +
History +

Abstract

The rapid application of big data and artificial intelligence, and the deep intersection of machine learning (ML) and chemistry disciplines have inspired more promising development approaches for the integration of ML technology with battery materials, especially in the material design of battery, performance prediction, structure optimization, and so on. The application of ML can effectively accelerate the selection process of battery materials and predict the performance of lithium batteries (LBs), consequently driving the development of LBs. This review briefly introduces the basic idea of ML and several important ML algorithms in the field of LBs, then the error performance and analysis of the traditional simulation calculation method and ML method are discussed, thereby increasing understanding of ML methods by LBs experts. Secondly, the application of ML in the practical development of battery materials, including cathode materials, electrolytes, multi-scale simulation of materials and high-throughput experiments (HTE), is emphatically introduced to draw out the ideas and means of applying ML methods in the field of batteries. Finally, the recent works of ML in lithium batteries are summarized and their application prospects are foreseen. It is hoped that this review will shed light on the application of ML in the development of LBs and promote the development of advanced LBs.

Key words

lithium battery / machine learning / material screening / material design / performance prediction

Cite this article

Download Citations
Zhendong Liu , Jiajie Pan , Quanbing Liu. Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries[J]. Progress in Chemistry. 2023, 35(4): 577-592 https://doi.org/10.7536/PC220937

References

[1]
Tian Y S, Zeng G B, Rutt A, Shi T, Kim H, Wang J Y, Koettgen J, Sun Y Z, Ouyang B, Chen T N, Lun Z Y, Rong Z Q, Persson K, Ceder G. Chem. Rev., 2021, 121(3): 1623.
[2]
Tong Q C, Gao P Y, Liu H Y, Xie Y, Lv J, Wang Y C, Zhao J J. J. Phys. Chem. Lett., 2020, 11(20): 8710.
[3]
Paier J, Hirschl R, Marsman M, Kresse G. J. Chem. Phys., 2005, 122(23): 234102.
[4]
Hadjadj-Aoul Y, Ait-Chellouche S. Information, 2020, 11(11): 541.
[5]
Dieb T M, Hou Z F, Tsuda K. J. Chem. Phys., 2018, 148(24): 241716.
[6]
Houchins G, Viswanathan V. J. Chem. Phys., 2020, 153(5): 054124.
[7]
Hanssens D, Van De Vijver E, Waegeman W, Everett M E, Moffat I, Sarris A, De Smedt P. Surf. Geophys., 2021, 19(5): 541.
[8]
Jiang S, Wu C C, Li F, Zhang Y Q, Zhang Z H, Zhang Q H, Chen Z J, Qu B, Xiao L X, Jiang M L. Rare Met., 2021, 40(7): 1698.
[9]
Zanca F, Glasby L T, Chong S, Chen S Y, Kim J, Fairen-Jimenez D, Monserrat B, Moghadam P Z. J. Mater. Chem., 2021, 9(39): 13584.
[10]
Sun X, Zheng J N, Gao Y J, Qiu C L, Yan Y L, Yao Z H, Deng S W, Wang J G. Appl. Surf. Sci., 2020, 526: 146522.
[11]
Cunha R P, Lombardo T, Primo E N, Franco A A. Batter. Supercaps., 2020, 3(1): 60.
[12]
Hu Z H, Jing Y K, Xue Y, Fan P H, Wang L R, Vanyukov M, Kirisci L, Wang J M, Tarter R E, Xie X Q. Drug Alcohol Dependence., 2020, 206: 107604.
[13]
Delnevo G, Di Lena P, Mirri S, Prandi C, Salomoni P. J. Big Data., 2019, 6(1): 64.
[14]
Nyshadham C, Rupp M, Bekker B, Shapeev A V, Mueller T, Rosenbrock C W, Csányi G, Wingate D W, Hart G L W. Npj Comput. Mater., 2019, 5: 51.
[15]
Venugopal P, Shankar S S, Jebakumar C P, Agarwal R, Alhelou H H, Reka S S, Golshan M E H. IEEE Access., 2021, 9: 159616.
[16]
Xie T, Grossman J C. Phys. Rev. Lett., 2018, 120(14): 145301.
[17]
Sendek A D, Ransom B, Cubuk E D, Pellouchoud L A, Nanda J, Reed E J. Adv. Energy Mater., 2022, 12(31): 2200553.
[18]
Schmidt J, Marques M R G, Botti S, Marques M A L. Npj Comput. Mater., 2019, 5: 83.
[19]
Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A. Nature, 2018, 559(7715): 547.
[20]
Zou Z N, Zhang C X, Wang Q Y, Hou Z Z, Xiong Z Q, Kong F, Wang Q J, Song J Z, Liu B Y, Liu B F, Wang L J, Lai F N, Fan Q, Tao W R, Zhao S, Ma X N, Li M, Wu K L, Zhao H, Chen Z J, Xie W. Science, 2022, 378(6615): eabo7923.
[21]
Kalinich M, Ebrahim S, Hays R, Melcher J, Vaidyam A, Torous J. Schizophr. Res. Cogn., 2022, 27: 100216.
[22]
Wu J D, Wei Z B, Liu K L, Quan Z Y, Li Y W. IEEE Trans. Veh. Technol., 2020, 69(11): 12786.
[23]
Li S Q, He H W, Li J W. Appl. Energy., 2019, 242: 1259.
[24]
GlÓria A F X, Sebastião P J A. IEEE Access., 2021, 9: 75021.
[25]
Lombardo T, Duquesnoy M, El-Bouysidy H, ÅrÉn F, Gallo-Bueno A, JØrgensen P B, Bhowmik A, Demortière A, Ayerbe E, Alcaide F, Reynaud M, Carrasco J, Grimaud A, Zhang C, Vegge T, Johansson P, Franco A A. Chem. Rev., 2022, 122(12): 10899.
[26]
Guo H Y, Wang Q, Stuke A, Urban A, Artrith N. Front. Energy Res., 2021, 9: 695902.
[27]
Ying Y R, Fan K, Luo X, Qiao J L, Huang H T. J. Mater. Chem. A., 2021, 9(31): 16860.
[28]
Shao H, Pu J S, Zhu Y L, Gao B Y, Zhu Z G, Rao Y B, IEEE 14th PacificVis., 2021, pp. 1-5.
[29]
Hu X S, Che Y H, Lin X K, Onori S. IEEE Trans. Transp. Electrific., 2021, 7(2): 382.
[30]
Zhou Z H. Natl. Sci. Rev., 2018, 5(1): 44.
[31]
Stern M, Hexner D, Rocks J W, Liu A J. Phys. Rev. X., 2021, 11(2): 021045.
[32]
Tang T, Yuan H M. J. Power Sources., 2021, 514: 230572.
[33]
Moses I A, Joshi R P, Ozdemir B, Kumar N, Eickholt J, Barone V. ACS Appl. Mater. Interfaces., 2021, 13(45): 53355.
[34]
Wu B, Han S, Shin K G, Lu W. J. Power Sources., 2018, 395: 128.
[35]
Abdelmoula R, Khamis A, Karray F. Lecture Notes in Computer Science. Cham: Springer International Publishing., 2019, 134.
[36]
Ryan K, Lengyel J, Shatruk M. J. Am. Chem. Soc., 2018, 140(32): 10158.
[37]
Fioribello S, Giribone P G. J. Finan. Eng., 2018, 5(4): 1850031.
[38]
Tameemi A Q. IEEE Sens. J., 2022, 22(1): 795.
[39]
Guo H S, Wang W J. Artif. Intell. Rev., 2019, 51(1): 19.
[40]
Vidal C, Malysz P, Kollmeyer P, Emadi A. IEEE Access., 2020, 8: 52796.
[41]
Sutton C, Boley M, Ghiringhelli L M, Rupp M, Vreeken J, Scheffler M. Nat. Commun., 2020, 11: 4428.
[42]
Liow C H, Kang H, Kim S, Na M, Lee Y J, Baucour A, Bang K, Shim Y, Choe J, Hwang G, Cho S, Park G, Yeom J, Agar J C, Yuk J M, Shin J, Lee H M, Byon H R, Cho E, Hong S. Nano Energy., 2022, 98: 107214.
[43]
Jürgen Hafner C W G C. MRS Bulletin., 2006, (31): 659.
[44]
Faber F A, Hutchison L, Huang B, Gilmer J, Schoenholz S S, Dahl G E, Vinyals O, Kearnes S, Riley P F, von Lilienfeld O A. J. Chem. Theory Comput., 2017, 13(11): 5255.
[45]
Jha D, Choudhary K, Tavazza F, Liao W K, Choudhary A, Campbell C, Agrawal A. Nat. Commun., 2019, 10: 5316.
[46]
Hruska E, Gale A, Liu F. J. Chem. Theory Comput., 2022, 18(2): 1096.
[47]
Wang G Y, Fearn T, Wang T Y, Choy K L. ACS Cent. Sci., 2021, 7(9): 1551.
[48]
Wu W, Sun Q. ACS Mater. Lett., 2022, 4(1): 175.
[49]
Jin L J, Ji Y J, Wang H S, Ding L F, Li Y Y. Phys. Chem. Chem. Phys., 2021, 23(38): 21470.
[50]
Meuwly M. Chem. Rev., 2021, 121(16): 10218.
[51]
Leverant C J, Harvey J A, Alam T M, Greathouse J A. J. Phys. Chem., 2021, 125(46): 25898.
[52]
Allam O, Cho B W, Kim K C, Jang S S. RSC Adv., 2018, 8(69): 39414.
[53]
Moosavi S M, Chidambaram A, Talirz L, Haranczyk M, Stylianou K C, Smit B. Nat. Commun., 2019, 10: 539.
[54]
Okubo M, Ko S, Dwibedi D, Yamada A. J. Mater. Chem., 2021, 9(12): 7407.
[55]
Chkirbene Z, Erbad A, Hamila R, Mohamed A, Guizani M, Hamdi M. IEEE Access., 2020, 8: 95864.
[56]
Zhou L M, Yao A M, Wu Y J, Hu Z Y, Huang Y H, Hong Z J. Adv. Theory Simul., 2021, 4(9): 2100196.
[57]
Xu S Q, Liang J C, Yu Y D, Liu R L, Xu Y, Zhu X, Zhao Y. J. Phys. Chem., 2021, 125(39): 21352.
[58]
Gong S, Wang S, Zhu T S, Chen X, Yang Z Z, Buehler M J, Shao-Horn Y, Grossman J C. JACS Au., 2021, 1(11): 1904.
[59]
Zhang H K, Wang Z L, Ren J H, Liu J Y, Li J J. Energy Storage Mater., 2021, 35: 88.
[60]
Song D X, Chen X, Lin Z Z, Tang Z L, Ma W G, Zhang Q, Li Y S, Zhang X. ACS Nano, 2021, 15(10): 16469.
[61]
Ai Y, Lu Z, Wei X, Zhang R. J Inorg Mater., 2021, 36(11): 1178-1184.
[62]
Chen L, Huang S B, Qiu J Y, Zhang H, Cao G P. Prog. Chem., 2021, 33(8): 1378.
陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 化学进展. 2021, 33(8): 1378.).
[63]
Lu J S, Chen J M, He T X, Zhao J W, Liu J, Huo Y P. Prog. Chem., 2021, 33(8): 1344.
陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 化学进展. 2021, 33(8): 1344.).
[64]
Xue Z G, He D, Xie X L. J. Mater. Chem., 2015, 3(38): 19218.
[65]
Jalem R, Aoyama T, Nakayama M, Nogami M. Chem. Mater., 2012, 24(7): 1357.
[66]
Zhang Y, Xu X J, Ind. Eng. Chem. Res., 2021, 60(1): 343.
[67]
Choi E, Jo J, Kim W, Min K. ACS Appl. Mater. Interfaces., 2021, 13(36): 42590.
[68]
Wang C H, Aoyagi K, Aykol M, Mueller T. ACS Appl. Mater. Interfaces., 2020, 12(49): 55510.
[69]
Sendek A D, Cheon G, Pasta M, Reed E J. J. Phys. Chem., 2020, 124(15): 8067.
[70]
Li F, Cheng X B, Lu L L, Yin Y C, Luo J D, Lu G X, Meng Y F, Mo H S, Tian T, Yang J T, Wen W, Liu Z P, Zhang G Z, Shang C, Yao H B. Nano Lett., 2022, 22(6): 2461.
[71]
Chen Y T, Duquesnoy M, Tan D H S, Doux J M, Yang H D, Deysher G, Ridley P, Franco A A, Meng Y S, Chen Z. ACS Energy Lett., 2021, 6(4): 1639.
[72]
Jo J, Choi E, Kim M, Min K. ACS Appl. Energy Mater., 2021, 4(8): 7862-7869.
[73]
Tang X P, Yao K, Liu B Y, Hu W G, Gao F R. Energies., 2018, 11(1): 86.
[74]
Ali S, Glass T, Parr B, Potgieter J, Alam F. IEEE Trans. Instrum. Meas., 2021, 70: 5500511.
[75]
Shodiev A, Duquesnoy M, Arcelus O, Chouchane M, Li J L, Franco A A. J. Power Sources, 2021, 511: 230384.
[76]
Zahid T, Xu K, Li W M. Electron. Lett., 2017, 53(25): 1665.
[77]
Yang R X, Xiong R, Shen W X, Lin X F. Engineering., 2021, 7(3): 395.
[78]
Huang G Y, Huang X, Du J W, Sun X H, Li B T, Ye H M. Prog. Chem., 2021, 33(5): 855.
黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 化学进展. 2021, 33(5): 855.).
[79]
Ellis L D, Buteau S, Hames S G, Thompson L M, Hall D S, Dahn J R. J. Electrochem. Soc., 2018, 165(2): A256.
[80]
Scherer C, Scheid R, Andrienko D, Bereau T. J. Chem. Theory Comput., 2020, 16(5): 3194.
[81]
Nakhaei-Kohani R, Ali Madani S, Mousavi S P, Atashrouz S, Abedi A, Hemmati-Sarapardeh A, Mohaddespour A. J. Mol. Liq., 2022, 362: 119509.
[82]
Xiao R J, Li H, Chen L Q. Acta Phys. Sin., 2018, 67(12): 128801.
[83]
Sun Y W, Yang T Z, Ji H Q, Zhou J Q, Wang Z K, Qian T, Yan C L. Adv. Energy Mater., 2020, 10(41): 2002373.
[84]
Baktash A, Reid J C, Yuan Q H, Roman T, Searles D J. Adv. Mater., 2020, 32(18): 1908041.
[85]
Sendek A D, Cubuk E D, Antoniuk E R, Cheon G, Cui Y, Reed E J. Chem. Mater., 2019, 31(2): 342.
[86]
Lin M, Liu X S, Xiang Y X, Wang F, Liu Y P, Fu R Q, Cheng J, Yang Y. Angew. Chem. Int. Ed., 2021, 60(22): 12547.
[87]
Chmiela S, Sauceda H E, Müller K R, Tkatchenko A. Nat. Commun., 2018, 9: 3887.
[88]
Unke O T, Chmiela S, Sauceda H E, Gastegger M, Poltavsky I, Schütt K T, Tkatchenko A, Müller K R. Chem. Rev., 2021, 121(16): 10142.
[89]
Chan H, Narayanan B, Cherukara M J, Sen F G, Sasikumar K, Gray S K, Chan M K Y, Sankaranarayanan S K R S. J. Phys. Chem., 2019, 123(12): 6941.
[90]
Sui X, He S, Huang X R, Teodorescu R, Stroe D I, IEEE. Iecon., 2020, 4(9): 1779.
[91]
NoÉ F, Tkatchenko A, Müller K R, Clementi C. Annu. Rev. Phys. Chem., 2020, 71: 361.
[92]
Eremin R A, Zolotarev P N, Ivanshina O Y, Bobrikov I A. J. Phys. Chem., 2017, 121(51): 28293.
[93]
Fujimura K, Seko A, Koyama Y, Kuwabara A, Kishida I, Shitara K, Fisher C A J, Moriwake H, Tanaka I. Adv. Energy Mater., 2013, 3(8): 980.
[94]
Callaghan S. Patterns., 2021, 2(3): 100221.
[95]
Benayad A, Diddens D, Heuer A, Krishnamoorthy A N, Maiti M, Le Cras F, Legallais M, Rahmanian F, Shin Y, Stein H, Winter M, Wölke C, Yan P, Cekic-Laskovic I. Adv. Energy Mater., 2022, 12(17): 2102678.
[96]
Kafle J, Harris J, Chang J, Koshina J, Boone D, Qu D Y. J. Power Sources., 2018, 392: 60.
[97]
Whitacre J F, Mitchell J, Dave A, Wu W, Burke S, Viswanathan V. J. Electrochem. Soc., 2019, 166(16): A4181.

Funding

Key-Area Research and Development Program of Guangdong Province(2020B090919005)
National Natural Science Foundation of China(22179025)
National Natural Science Foundation of China(21905056)
National Natural Science Foundation of China(21975056)
PDF(10142 KB)

Accesses

Citation

Detail

Sections
Recommended

/