Condensed Matter Chemistry in Catalysis by Zeolites

Fengshou Xiao, Qinming Wu, Chengtao Wang

Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 886-903.

PDF(26665 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(26665 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 886-903. DOI: 10.7536/PC221008
Review

Condensed Matter Chemistry in Catalysis by Zeolites

Author information +
History +

Abstract

This work is devoted to condensed matter chemistry in gas-phase catalytic reactions over zeolite catalysts, which mainly involve in the processes of (i) adsorption of gaseous reactants into zeolite micropores, (ii) conversion of the reactants on catalytic sites in zeolites, and (iii) desorption of products in zeolites. In the above processes, both fast adsorption in zeolite micropores and rapid desorption from zeolites can significantly improve the reaction rate. To realize these purposes, it has been developed new strategies for rational synthesis of zeolites including preparation of zeolite nanocrystals, introduction of mesopores into zeolite crystals, preparation of zeolite nanosheets, and adjusting wettability of zeolite crystals, which have been simply concluded. Furthermore, the catalytically active sites including single atoms and metal nanoparticles can be introduced into zeolite frameworks or zeolite crystals, which can combine both the advantages of high stability and excellent shape selectivity for zeolites and the advantages of high activity and anti-deactivation for metal species together, offering a good opportunity to design and preparation of new highly efficient zeolite-based catalysts in the future. Finally, it is suggested perspectives such as rational synthesis of zeolite catalysts by theoretical simulations from the energy comparison, preparation of highly efficient catalysts by incorporating catalytically active sites in zeolite framework from the requirements of catalytic reactions, and green synthesis of zeolites for reduction of harmful gases, polluted water, and solid wastes in industrial processes.

Contents

1 Introduction

2 Adsorption of gaseous reactants in zeolite micropores

2.1 Preparation of zeolite nanocrystals

2.2 Introduction of mesoporosity in zeolite crystals

2.3 Preparation of zeolite nanosheets

3 Conversion of reactants on catalytic sites in zeolites

3.1 Acidic sites in zeolite frameworks

3.2 Heteroatoms in zeolite frameworks

3.3 Multisites in zeolite crystals

4 Desorption of products from zeolite catalysts

4.1 Preparation of zeolite nanocrystals and nanosheets and introduction of mesopores into zeolite crystals

4.2 Adjusting wettability of zeolite catalysts

4.3 Selective adsorption of reaction products by zeolite additives

5 Conclusion and perspectives

Key words

condensed matter / gas-solid phase catalysis / zeolite / catalytic materials

Cite this article

Download Citations
Fengshou Xiao , Qinming Wu , Chengtao Wang. Condensed Matter Chemistry in Catalysis by Zeolites[J]. Progress in Chemistry. 2023, 35(6): 886-903 https://doi.org/10.7536/PC221008

References

[1]
Xu R, Pang W, Yu J H, Huo Q, Chen J S. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley, 2007.
[2]
Xiao F S, Meng X J. Zeolites in Sustainable Chemistry. Heidelberg: Springer, 2016.
[3]
Barrer R M. Hydrothermal Chemistry of Zeolites. London: Academic Press, 1982.
[4]
Breck D. Zeolite Molecular sieves. Malabar: Krieger, 1984.
[5]
van Bekkum H H, Flanigen E E M, Jacobs P P A, Jansen K J C. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2001.
[6]
Rabo J. Zeolite Chemistry and Catalysis. Washington DC: ACS Monograph, 1976.
[7]
Corma A. Chem. Rev., 1995, 95(3): 559.
[8]
Davis M E. Nature, 2002, 417(6891): 813.
[9]
Davis M E, Lobo R F. Chem. Mater., 1992, 4(4): 756.
[10]
Cundy C S, Cox P A. Chem. Rev., 2003, 103(3): 663.
[11]
Bhatia S. Zeolite Catalysis: Principles and Applications. Boca Raton, Fla.: CRC Press, 1990.
[12]
Yang W. Handbook of Fluidization and Fluid-Particle Systems. New York: Marcel Dekker, 2003.
[13]
Xie Z K, et al. Light Olefins:Fundamentals of Catalytic Processes. Beijing: Sinopec Press, 2013.
( 谢在库, 等. 低碳烯烃催化技术基础. 北京: 中国石化出版社, 2013.).
[14]
Song C S. Catal. Today, 2003, 86(1/4): 211.
[15]
Sadeghbeigi R. Fluid Catalytic Cracking Handbook. Amsterdam: Elsevier, 2012. 295.
[16]
Stocker M. Micropor. Mesopor. Mater., 1999, 29: 3.
[17]
Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens T V W, Joensen F, Bordiga S, Lillerud K P. Angew. Chem. Int. Ed., 2012, 51(24): 5810.
[18]
Keil F J. Micropor. Mesopor. Mater., 1999, 29: 49.
[19]
Dusselier M, Davis M E. Chem. Rev., 2018, 118(11): 5265.
[20]
Chen D, Moljord K, Holmen A. Microporous Mesoporous Mater., 2012, 164: 239.
[21]
Yarulina I, Chowdhury A D, Meirer F, Weckhuysen B M, Gascon J. Nat. Catal., 2018, 1(6): 398.
[22]
Li J H, Chang H Z, Ma L, Hao J M, Yang R T. Catal. Today, 2011, 175(1): 147.
[23]
Brandenberger S, Kröcher O, Tissler A, Althoff R. Catal. Rev., 2008, 50(4): 492.
[24]
Beale A M, Gao F, Lezcano-Gonzalez I, Peden C H F, Szanyi J. Chem. Soc. Rev., 2015, 44(20): 7371.
[25]
Guan B, Zhan R, Lin H, Huang Z. Appl. Therm. Eng., 2014, 66(1/2): 395.
[26]
Gao F, Kwak J H, Szanyi J, Peden C H F. Top. Catal., 2013, 56(15/17): 1441.
[27]
Wang J H, Zhao H W, Haller G, Li Y D. Appl. Catal. B Environ., 2017, 202: 346.
[28]
Martens J A, Vanbutsele G, Jacobs P A, Denayer J, Ocakoglu R, Baron G, Muñoz Arroyo J A, Thybaut J, Marin G B. Catal. Today, 2001, 65(2/4): 111.
[29]
Wang W, Liu C J, Wu W. Catal. Sci. Technol., 2019, 9(16): 4162.
[30]
Okuhara T. J. Jpn. Petrol. Inst., 2004, 47(1): 1.
[31]
Vogt E T C, Weckhuysen B M. Chem. Soc. Rev., 2015, 44(20): 7342.
[32]
Vuong G T, Hoang V T, Nguyen D T, Do T O. Appl. Catal. A Gen., 2010, 382(2): 231.
[33]
Komvokis V, Tan L X L, Clough M, Pan S S, Yilmaz B. Xiao F S, Meng X J. Zeolite in Sustainable Chemistry. Eds.: Heidelberg: Springer, 2015, 271.
[34]
Catizzone E, Van Daele S, Bianco M, Di Michele A, Aloise A, Migliori M, Valtchev V, Giordano G. Appl. Catal. B Environ., 2019, 243: 273.
[35]
Catizzone E, Bonura G, Migliori M, Frusteri F, Giordano G. Molecules, 2018, 23(1): 31.
[36]
Awala H, Gilson J P, Retoux R, Boullay P, Goupil J M, Valtchev V, Mintova S. Nat. Mater., 2015, 14(4): 447.
[37]
Tosheva L, Valtchev V P. Chem. Mater., 2005, 17(10): 2494.
[38]
Mintova S, Jaber M, Valtchev V. Chem. Soc. Rev., 2015, 44(20): 7207.
[39]
Mintova S, Gilson J P, Valtchev V. Nanoscale, 2013, 5(15): 6693.
[40]
Lynch J, Raatz F, Dufresne P. Zeolites, 1987, 7(4): 333.
[41]
Triantafillidis C S, Vlessidis A G, Evmiridis N P. Ind. Eng. Chem. Res., 2000, 39(2): 307.
[42]
Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, de Jong K P, Moulijn J A, PÉrez-Ramírez J. J. Am. Chem. Soc., 2005, 127(31): 10792.
[43]
Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. J. Am. Chem. Soc., 2000, 122(29): 7116.
[44]
Pavlackova Z, Kosova G, Zilkova N, Zukal A, Cejka J. Stud. Surf. Sci. Catal., 2006, 162: 905.
[45]
Kustova M Y, Hasselriis P, Christensen C H. Catal. Lett., 2004, 96(3/4): 205.
[46]
Christensen C, Johannsen K, Tornqvist E, Schmidt I, Topsoe H, Christensen C. Catal. Today, 2007, 128(3/4): 117.
[47]
Tao Y S, Kanoh H, Kaneko K. J. Am. Chem. Soc., 2003, 125(20): 6044.
[48]
Tao Y S, Kanoh H, Kaneko K. J. Phys. Chem. B, 2003, 107(40): 10974.
[49]
Tao Y S, Kanoh H, Kaneko K. Langmuir, 2005, 21(2): 504.
[50]
Li W C, Lu A H, Palkovits R, Schmidt W, Spliethoff B, Schüth F. J. Am. Chem. Soc., 2005, 127(36): 12595.
[51]
Xiao F S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Angew. Chem. Int. Ed., 2006, 45(19): 3090.
[52]
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Nat. Mater., 2006, 5(9): 718.
[53]
Wang H, Pinnavaia T J. Angew. Chem. Int. Ed., 2006, 45(45): 7603.
[54]
Zhu J, Zhu Y H, Zhu L K, Rigutto M, van der Made A, Yang C G, Pan S X, Wang L, Zhu L F, Jin Y Y, Sun Q, Wu Q M, Meng X J, Zhang D L, Han Y, Li J X, Chu Y Y, Zheng A M, Qiu S L, Zheng X M, Xiao F S. J. Am. Chem. Soc., 2014, 136(6): 2503.
[55]
García-Martínez J, Johnson M, Valla J, Li K H, Ying J Y. Catal. Sci. Technol., 2012, 2(5): 987.
[56]
Siddiqui M A B, Aitani A M, Saeed M R, Al-Yassir N, Al-Khattaf S. Fuel, 2011, 90(2): 459.
[57]
Park D, Kim S, Wang H, Pinnavaia T, Papapetrou M, Lappas A, Triantafyllidis K. Angew. Chem. Int. Ed., 2009, 48(41): 7645.
[58]
Zhang H Y, Wang L, Zhang D L, Meng X J, Xiao F S. Microporous Mesoporous Mater., 2016, 233: 133.
[59]
Zhang Y J, Che S A. Angew. Chem. Int. Ed., 2020, 59: 50.
[60]
Shen X F, Mao W T, Ma Y H, Xu D D, Wu P, Terasaki O, Han L, Che S N. Angew. Chem. Int. Ed., 2018, 57(3): 724.
[61]
Zhu H B, Liu Z C, Kong D J, Wang Y D, Xie Z K. J. Phys. Chem. C, 2008, 112(44): 17257.
[62]
Chen L H, Li X Y, Rooke J C, Zhang Y H, Yang X Y, Tang Y, Xiao F S, Su B L. J. Mater. Chem., 2012, 22(34): 17381.
[63]
Chen L H, Li X Y, Tian G, Li Y, Rooke J C, Zhu G S, Qiu S L, Yang X Y, Su B L. Angew. Chem. Int. Ed., 2011, 50(47): 11156.
[64]
Wu L L, Degirmenci V, Magusin P C M M, Szyja B M, Hensen E J M. Chem. Commun., 2012, 48(76): 9492.
[65]
PÉrez-Ramírez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem. Soc. Rev., 2008, 37(11): 2530.
[66]
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461(7261): 246.
[67]
Na K, Jo C, Kim J, Ahn W S, Ryoo R. ACS Catal., 2011, 1(8): 901.
[68]
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J. Am. Chem. Soc., 2010, 132(12): 4169.
[69]
Zhang X Y, Liu D X, Xu D D, Asahina S, Cychosz K A, Agrawal K V, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M. Science, 2012, 336(6089): 1684.
[70]
Shan Z C, Wang H, Meng X J, Liu S Y, Wang L, Wang C Y, Li F, Lewis J P, Xiao F S. Chem. Commun., 2011, 47(3): 1048.
[71]
Xu L, Ji X Y, Li S H, Zhou Z Y, Du X, Sun J L, Deng F, Che S N, Wu P. Chem. Mater., 2016, 28(12): 4512.
[72]
Liu L J, Wang H B, Wang R W, Sun C Y, Zeng S J, Jiang S, Zhang D L, Zhu L K, Zhang Z T. RSC Adv., 2014, 4(41): 21301.
[73]
Xu H, Chen W, Zhang G Q, Wei P F, Wu Q M, Zhu L F, Meng X J, Li X J, Fei J H, Han S C, Zhu Q Y, Zheng A M, Ma Y H, Xiao F S. J. Mater. Chem. A, 2019, 7(28): 16671.
[74]
Zhang F, Liu Y, Sun Q, Dai Z F, Gies H, Wu Q M, Pan S X, Bian C Q, Tian Z J, Meng X J, Zhang Y, Zou X D, Yi X F, Zheng A M, Wang L, Xiao F S. Chem. Commun., 2017, 53(36): 4942.
[75]
Koekkoek A J J, Kim W, Degirmenci V, Xin H, Ryoo R, Hensen E J M. J. Catal., 2013, 299: 81.
[76]
Xu D D, Ma Y H, Jing Z F, Han L, Singh B, Feng J, Shen X F, Cao F L, Oleynikov P, Sun H, Terasaki O, Che S N. Nat. Commun., 2014, 5: 4262.
[77]
Inayat A, Knoke I, Spiecker E, Schwieger W. Angew. Chem. Int. Ed., 2012, 51(8): 1962.
[78]
Ren L M, Guo Q, Kumar P, Orazov M, Xu D D, Alhassan S M, Mkhoyan K A, Davis M E, Tsapatsis M. Angew. Chem. Int. Ed., 2015, 54(37): 10848.
[79]
Seo Y, Lee S, Jo C, Ryoo R. J. Am. Chem. Soc., 2013, 135: 8806.
[80]
Zhou Y W, Mu Y Y, Hsieh M F, Kabius B, Pacheco C, Bator C, Rioux R M, Rimer J D. J. Am. Chem. Soc., 2020, 142(18): 8211.
[81]
Tian P, Wei Y X, Ye M, Liu Z M. ACS Catal., 2015, 5(3): 1922.
[82]
Zhou Z Q, Liu H C, Chen Z Y, Zhu W L, Liu Z M. ACS Catal., 2021, 11(7): 4077.
[83]
Yokoi T, Mochizuki H, Namba S, Kondo J N, Tatsumi T. J. Phys. Chem. C, 2015, 119(27): 15303.
[84]
Wu Q M, Xu C, Zhu L F, Meng X J, Xiao F S. Catal. Today, 2022, 390/391: 2.
[85]
Notari B. Advances in Catalysis. Amsterdam: Elsevier, 1996. 253.
[86]
Blasco T, Camblor M A, Corma A, Esteve P, Guil J M, Martínez A, PerdigÓn-MelÓn J A, Valencia S. J. Phys. Chem. B, 1998, 102(1): 75.
[87]
Perego C, Carati A, Ingallina P, Mantegazza M A, Bellussi G. Appl. Catal. A Gen., 2001, 221(1/2): 63.
[88]
Corma A, Nemeth L T, Renz M, Valencia S. Nature, 2001, 412(6845): 423.
[89]
Yang Z Y, Li H, Zhou H, Wang L, Wang L X, Zhu Q Y, Xiao J P, Meng X J, Chen J X, Xiao F S. J. Am. Chem. Soc., 2020, 142(38): 16429.
[90]
Zhou H, Yi X F, Hui Y, Wang L, Chen W, Qin Y C, Wang M, Ma J B, Chu X F, Wang Y Q, Hong X, Chen Z F, Meng X J, Wang H, Zhu Q Y, Song L J, Zheng A M, Xiao F S. Science, 2021, 372(6537): 76.
[91]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.
[92]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.
[93]
Wang A Q, Li J, Zhang T. Nat. Rev. Chem., 2018, 2(6): 65.
[94]
Kwak J H, Tonkyn R G, Kim D H, Szanyi J, Peden C H F. J. Catal., 2010, 275(2): 187.
[95]
Fickel D W, D’Addio E, Lauterbach J A, Lobo R F. Appl. Catal. B Environ., 2011, 102(3/4): 441.
[96]
Paolucci C, Khurana I, Parekh A A, Li S C, Shih A J, Li H, Di Iorio J R, Albarracin-Caballero J D, Yezerets A, Miller J T, Delgass W N, Ribeiro F H, Schneider W F, Gounder R. Science, 2017, 357(6354): 898.
[97]
Ren L M, Zhu L F, Yang C G, Chen Y M, Sun Q, Zhang H Y, Li C J, Nawaz F, Meng X J, Xiao F S. Chem. Commun., 2011, 47(35): 9789.
[98]
Xie L J, Liu F D, Ren L M, Shi X Y, Xiao F S, He H. Environ. Sci. Technol., 2014, 48(1): 566.
[99]
Tao S, Li X L, Lv G, Wang C X, Xu R S, Ma H J, Tian Z J. Catal. Sci. Technol., 2017, 7(23): 5775.
[100]
Chen C Y, Wang X, Zhang J, Bian C Q, Pan S X, Chen F, Meng X J, Zheng X M, Gao X H, Xiao F S. Catal. Today, 2015, 258: 190.
[101]
Zhang J, Wang L, Zhang B S, Zhao H S, Kolb U, Zhu Y H, Liu L M, Han Y, Wang G X, Wang C T, Su D S, Gates B C, Xiao F S. Nat. Catal., 2018, 1(7): 540.
[102]
Wang L, Xiao F S. ChemCatChem, 2014, 6(11): 3048.
[103]
Yang G J, Wei Y X, Xu S T, Chen J R, Li J Z, Liu Z M, Yu J H, Xu R R. J. Phys. Chem. C, 2013, 117(16): 8214.
[104]
Sun Q M, Wang N, Xi D Y, Yang M, Yu J H. Chem. Commun., 2014, 50(49): 6502.
[105]
Weissenberger T, Reiprich B, Machoke A G F, Klühspies K, Bauer J, Dotzel R, Casci J L, Schwieger W. Catal. Sci. Technol., 2019, 9(12): 3259.
[106]
Yang C G, Ren L M, Zhang H Y, Zhu L F, Wang L, Meng X J, Xiao F S. J. Mater. Chem., 2012, 22(24): 12238.
[107]
Lei C, Dong Z Y, Martinez C, Martinez-Triguero J, Chen W, Wu Q M, Meng X J, Parvulescu A N, De Baerdemaeker T, Muller U, Zheng A M, Ma Y H, Zhang W P, Yokoi T, Marler B, De Vos D E, Kolb U, Corma A, Xiao F S. Angew. Chem. Int. Ed., 2020, 59: 15649.
[108]
Zhang L, Jiang Y W, Chen B B, Shi C, Li Y B, Wang C Y, Han S C, Pan S X, Wang L, Meng X J, Xiao F S. Catal. Today, 2020, 339: 174.
[109]
Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C T, Meng X J, Yang H Q, Mesters C, Xiao F S. Science, 2020, 367(6474): 193.
[110]
Wang C T, Fang W, Liu Z Q, Wang L, Liao Z W, Yang Y R, Li H J, Liu L, Zhou H, Qin X D, Xu S D, Chu X F, Wang Y Q, Zheng A M, Xiao F S. Nat. Nanotechnol., 2022, 17(7): 714.
[111]
Loewenstein W. Am. Mineral, 1954, 39: 92.
[112]
Wu Q M, Luan H M, Xiao F S. Natl. Sci. Rev., 2022, 9(9): nwac023.
[113]
Wang H, Wang L, Xiao F S. ACS Cent. Sci., 2020, 6(10): 1685.
[114]
Ma R Y, Wang L, Wang S, Wang C T, Xiao F S. Appl. Catal. B Environ., 2017, 212: 193.
[115]
Xie B, Song J W, Ren L M, Ji Y Y, Li J X, Xiao F S. Chem. Mater., 2008, 20(14): 4533.
[116]
Ren L M, Wu Q M, Yang C G, Zhu L F, Li C J, Zhang P L, Zhang H Y, Meng X J, Xiao F S. J. Am. Chem. Soc., 2012, 134(37): 15173.
[117]
Meng X J, Xiao F S. Chem. Rev., 2014, 114(2): 1521.
[118]
Wu Q M, Meng X J, Gao X H, Xiao F S. Acc. Chem. Res., 2018, 51(6): 1396.
[119]
Duan J D, Chen W, Wang C T, Wang L, Liu Z Q, Yi X F, Fang W, Wang H, Wei H, Xu S D, Yang Y W, Yang Q W, Bao Z B, Zhang Z G, Ren Q L, Zhou H, Qin X D, Zheng A M, Xiao F S. J. Am. Chem. Soc., 2022, 144(31): 14269.
[120]
Xiong H, Liu Z Q, Chen X, Wang H Q, Qian W Z, Zhang C X, Zheng A M, Wei F. Science, 2022, 376(6592): 491.

Funding

The National Natural Science Foundation of China(U21B20101)
The National Natural Science Foundation of China(22288101)
PDF(26665 KB)

Accesses

Citation

Detail

Sections
Recommended

/