High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure

Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma

Prog Chem ›› 2023, Vol. 35 ›› Issue (5) : 709-720.

PDF(10549 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10549 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (5) : 709-720. DOI: 10.7536/PC221014
Review

High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure

Author information +
History +

Abstract

In recent years, with the development and popularization of Internet and artificial intelligence, the flexible pressure sensor with light, convenience and excellent electronic performance, as the core device of wearable electronic equipment, has a increasingly broad market. Flexible pressure sensors have attracted extensive attention in electronic skin, motion detection, medical monitoring and man-machine interface because of its flexibility, folding and excellent sensing performance. The construction of micro-nano structures is the key to improve the sensitivity and sensing performance of pressure sensors. Based on this, the sensing mechanism (piezoresistive, capacitive, piezoelectric, triboelectric) and key performance parameters (sensitivity, pressure response range, detection limit, response/recovery time, stability of circulation and linearity, etc.) of the high-sensitivity pressure sensors were summarized. Then, research progress of flexible pressure sensors using substrates to construct surface micro-nano structures (micro-convex structure, bramble structure and fold structure) and using conductive materials to construct micro-nano structures (micro-sphere structure, urchin structure and cellular structure) were compared and concluded. Furthermore, the application status of high-sensitivity flexible pressure sensors based on micro-nano structure in pulse detection, electronic skin, motion detection and man-machine interface was concluded. Finally, from the perspective of future application, the challenges and development direction of high sensitivity flexible pressure sensor are summarized.

Contents

1 Introduction

2 Sensing mechanism and key performance parameters of high sensitivity flexible pressure sensor

2.1 Sensing mechanism

2.2 Key performance parameters

3 Construction of high sensitivity flexible pressure sensor based on micro-nano structure of substrate materials

3.1 Micro-convex structure

3.2 Bramble structure

3.3 Fold structure

4 Construction of high sensitivity flexible pressure sensor based on micro-nano structure of conductive materials

5 Application of high sensitivity flexible pressure sensor based on micro-nano structure

6 Summary and outlook

Key words

flexible pressure sensor / high sensitivity / micro-nano structure

Cite this article

Download Citations
Yan Bao , Jiachen Xu , Ruyue Guo , et al. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure[J]. Progress in Chemistry. 2023, 35(5): 709-720 https://doi.org/10.7536/PC221014

References

[1]
Li L, Zheng J H, Chen J, Luo Z B, Su Y, Tang W, Gao X, Li Y T, Cao C J, Liu Q H, Kang X Y, Wang L, Li H. Adv. Mater. Interfaces, 2020, 7(17): 2000743.
[2]
Zong Y, Tan S, Ma J Z. Macromol. Rapid Commun., 2022, 43(8): 2100873.
[3]
Guo R Y, Bao Y. Fine Chemicals, 2021, 38(04): 649.
(郭茹月, 鲍艳. 精细化工, 2021, 38(04): 649.).
[4]
Kang K, Park J, Kim K, Yu K J. Nano Res., 2021, 14(9): 3096.
[5]
Jason N N, Ho M D, Cheng W L. J. Mater. Chem. C, 2017, 5(24): 5845.
[6]
Guo R Y, Bao Y, Zheng X, Zhang W B, Liu C, Chen J, Xu J C, Wang L X, Ma J Z. Adv. Mater.Function., 2023, 33(12), 2213283.
[7]
Asghar W, Li F L, Zhou Y L, Wu Y Z, Yu Z, Li S B, Tang D X, Han X T, Shang J, Liu Y W, Li R W. Adv. Mater. Technol., 2020, 5(2): 1900934.
[8]
Wang Y J. Modern Chemical Research, 2018, (09): 122.
(王宇捷. 当代化工研究, 2018, (09): 122.).
[9]
Suresh Kumar N, Padma Suvarna R, Chandra Babu Naidu K, Banerjee P, Ratnamala A, Manjunatha H. Appl. Phys. A, 2020, 126(6): 445.
[10]
Lu G W, Chen F E, Wu X F, Qu L T, Zhang J X, Shi G Q. Chinese Science Bulletin, 2005, 50(15): 1545.
(鲁戈舞, 陈凤恩, 吴旭峰, 曲良体, 张家鑫, 石高全. 科学通报, 2005, 50(15): 1545.).
[11]
Wang H M, Li S, Wang Y L, Wang H M, Shen X Y, Zhang M C, Lu H J, He M S, Zhang Y Y. Adv. Mater., 2020, 32(11): 1908214.
[12]
Jian M Q, Wang C Y, Wang Q, Wang H M, Xia K L, Yin Z, Zhang M C, Liang X P, Zhang Y Y. Sci. China Mater., 2017, 60(11): 1026.
[13]
Gao Y Y, Yan C, Huang H C, Yang T, Tian G, Xiong D, Chen N J, Chu X, Zhong S, Deng W L, Fang Y, Yang W Q. Adv. Funct. Mater., 2020, 30(11): 1909603.
[14]
Lyu Y, Gan S Y, Bao Y, Zhong L J, Xu J N, Wang W, Liu Z B, Ma Y M, Yang G F, Niu L. Membranes, 2020, 10(6): 128.
[15]
Zhang J W, Zhang Y, Li Y Y, Wang P. Polym. Rev., 2022, 62(1): 65.
[16]
Zhang J W, Zhang Y, Li Y Y, Ye X, Wang P, Xu Y K. ACS Appl. Electron. Mater., 2021, 3(7): 3177.
[17]
Su M, Li P, Liu X Q, Wei D P, Yang J. Nanomaterials, 2022, 12(9): 1495.
[18]
Krause T, Meier M, Brunzendorf J. J. Loss Prev. Process. Ind., 2021, 71: 104523.
[19]
He J, Zhang Y F, Zhou R H, Meng L R, Chen T, Mai W J, Pan C F. J. Materiomics, 2020, 6(1): 86.
[20]
Wu Y Z, Liu Y W, Zhou Y L, Man Q K, Hu C, Asghar W, Li F L, Yu Z, Shang J, Liu G, Liao M Y, Li R W. Sci. Robot., 2018, 3(22): eaat0429.
[21]
Zhou Y, Zhao L P, Tao W, Wang T S, Sun P, Liu F M, Yan X, Lu G Y. ACS Appl. Mater. Interfaces, 2022, 14(17): 19949.
[22]
Yu Q Y, Zhang P, Chen Y C. Micromachines, 2021, 12(10): 1219.
[23]
Park D Y, Joe D J, Kim D H, Park H, Han J H, Jeong C K, Park H, Park J G, Joung B, Lee K J. Adv. Mater., 2017, 29(37): 1702308.
[24]
Pierre Claver U, Zhao G. Adv. Eng. Mater., 2021, 23(5): 2001187.
[25]
Shlomy I, Divald S, Tadmor K, Leichtmann-Bardoogo Y, Arami A, Maoz B M. ACS Nano, 2021, 15(7): 11087.
[26]
Shao T Y, Wu J N, Zhang Y H, Cheng Y R, Zuo Z Q, Lv H K, Ying M L, Wong C P, Li Z. Adv. Mater. Technol., 2020, 5(5): 2000032.
[27]
Peng S H, Blanloeuil P, Wu S Y, Wang C H. Adv. Mater. Interfaces, 2018, 5(18): 1800403.
[28]
Ma C, Xu D, Huang Y C, Wang P Q, Huang J, Zhou J Y, Liu W F, Li S T, Huang Y, Duan X F. ACS Nano, 2020, 14(10): 12866.
[29]
Dai H F. Master’s Dissertation of Changchun University of Technology, 2022.
(戴鸿飞. 长春工业大学硕士论文, 2022.).
[30]
Pan L M, Han L Y, Liu H X, Zhao J J, Dong Y, Wang X H. Chem. Eng. J., 2022, 450: 137929.
[31]
Lee S, Kim J, Roh H, Kim W, Chung S, Moon W, Cho K. Adv. Mater., 2022, 34(21): 2109545.
[32]
Formica D, Schena E. Sensors, 2021, 21(2): 543.
[33]
Samoei V K, Jayatissa A H. Sens. Actuat. A Phys., 2020, 303: 111816.
[34]
Ruth S R A, Feig V R, Tran H, Bao Z N. Adv. Funct. Mater., 2020, 30(39): 2003491.
[35]
Pan W W, Han Z Y, Chang Y, Duan X X. Biosens. Bioelectron., 2020, 167: 112504.
[36]
Weng M C, Sun L Q, Qu S X, Chen L Z. Extreme Mech. Lett., 2020, 37: 100714.
[37]
Tang Z H, Xue S S, Li Y Q, Zhu Z C, Huang P, Fu S Y. ACS Appl. Mater. Interfaces, 2021, 13(40): 48009.
[38]
Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y, Ko H. ACS Nano, 2014, 8(5): 4689.
[39]
Khalili N, Shen X, Naguib H E. Soft Matter, 2018, 14(33): 6912.
[40]
Cao Y D, Li T, Gu Y, Luo H, Wang S Q, Zhang T. Small, 2018, 14(16): 1703902.
[41]
Lin M F, Cheng C, Yang C C, Hsiao W T, Yang C R. Org. Electron., 2021, 98: 106290.
[42]
Lu Y W, He Y, Qiao J T, Niu X, Li X J, Liu H, Liu L. ACS Appl. Mater. Interfaces, 2020, 12(49): 55169.
[43]
Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho H J, Algadi H, Al-Sayari S, Kim D E, Lee T. Adv. Funct. Mater., 2015, 25(21): 3114.
[44]
Lu N S, Lu C, Yang S X, Rogers J. Adv. Funct. Mater., 2012, 22(19): 4044.
[45]
Hu Y F, Huang T Q, Zhang H J, Lin H J, Zhang Y, Ke L W, Cao W, Hu K, Ding Y, Wang X Y, Rui K, Zhu J X, Huang W. ACS Appl. Mater. Interfaces, 2021, 13(20): 23905.
[46]
Sharma S, Chhetry A, Maharjan P, Zhang S P, Shrestha K, Sharifuzzaman M, Bhatta T, Shin Y, Kim D, Lee S, Park J Y. Nano Energy, 2022, 95: 106970.
[47]
Baek S, Jang H, Kim S Y, Jeong H, Han S, Jang Y, Kim D H, Lee H S. RSC Adv., 2017, 7(63): 39420.
[48]
Luo C, Liu N S, Zhang H, Liu W J, Yue Y, Wang S L, Rao J Y, Yang C X, Su J, Jiang X L, Gao Y H. Nano Energy, 2017, 41: 527.
[49]
Peng Z Q, Zheng S J, Zhang X, Yang J L, Wu S Z, Ding C, Lei L, Chen L, Feng G Y. Micromachines, 2022, 13(5): 694.
[50]
Zhang Y, Han F, Hu Y G, Xiong Y X, Gu H, Zhang G Q, Zhu P L, Sun R, Wong C P. Macromol. Chem. Phys., 2020, 221(11): 2000073.
[51]
Zhang Z A, Gui X C, Hu Q M, Yang L L, Yang R L, Huang B F, Yang B R, Tang Z K. Adv. Electron. Mater., 2021, 7(7): 2100174.
[52]
Xia T C, Yu R, Yuan J, Yi C Q, Ma L J, Liu F, Cheng G J. Adv. Mater. Technol., 2021, 6(3): 2000984.
[53]
Du D W, Ma X Y, An W X, Yu S H. Measurement, 2022, 201: 111645.
[54]
Riazi H, Taghizadeh G, Soroush M. ACS Omega, 2021, 6(17): 11103.
[55]
Bao Y, Zheng X, Guo R Y. Chemical Industry and Engineering Progress, 2022, 41(07): 3624.
(鲍艳, 郑茜, 郭茹月. 化工进展, 2022, 41(07): 3624.).
[56]
Zou Z N, Zhu C P, Li Y, Lei X F, Zhang W, Xiao J L. Sci. Adv., 2018, 4(2): eaaq0508.
[57]
Le Y, Chen J F, Wang W C. Chemical Industry and Engineering Progress, 2004,(06): 595.
(乐园, 陈建峰, 汪文川. 化工进展, 2004,(06): 595.).
[58]
Wu S X, Zhang X Z, Yu Y. Chemistry & Bioengineering, 2021, 38(12): 41.
(吴素心, 张雄志, 喻尧. 化学与生物工程, 2021, 38(12): 41.).
[59]
Ji B, Zhou Q, Wu J B, Gao Y B, Wen W J, Zhou B P. ACS Appl. Mater. Interfaces, 2020, 12(27): 31021.
[60]
Chu J, Cai J P. Nanoscale, 2020, 12(17): 9375.
[61]
Bao Y, Li X Q. New Chem. Mater., 2018, 46(12): 42.
(鲍艳, 李欣倩. 化工新型材料, 2018, 46(12): 42.).
[62]
Wang Y J, Wang Y, Xu M T, Dai F Y, Li Z. ACS Sustainable Chem. Eng., 2022, 10(51): 17252.
[63]
Wang X M, Tao L Q, Yuan M, Wang Z P, Yu J B, Xie D L, Luo F, Chen X P, Wong C. Nat. Commun., 2021, 12: 1776.
[64]
Liu C, Cai J, Dang P Z, Li X H, Zhang D Y. ACS Appl. Mater. Interfaces, 2020, 12(10): 12101.
[65]
Wang G J, Lin Z H, Jin S H, Li M, Jing L Y. J. Energy Storage, 2022, 45: 103525.
[66]
Yang Y, Chen L, He J, Hou X J, Qiao X J, Xiong J J, Chou X J. Adv. Mater. Technol., 2022, 7(1): 2100702.
[67]
Wang X, Yang J, Feng Z P, Zhang G Q, Qiu J, Wu Y F, Yang J. ACS Appl. Mater. Interfaces, 2021, 13(46): 55747.
[68]
Chen S, Song Y J, Xu F. ACS Appl. Mater. Interfaces, 2018, 10(40): 34646.
[69]
Park J, Lee Y, Ha M, Cho S, Ko H. J. Mater. Chem. B, 2016, 4(18): 2999.
[70]
Chen H T, Miao L M, Su Z M, Song Y, Han M D, Chen X X, Cheng X L, Chen D M, Zhang H X. Nano Energy, 2017, 40: 65.
[71]
Gao Z Y, Lou Z, Han W, Shen G Z. ACS Appl. Mater. Interfaces, 2020, 12(21): 24339.
[72]
Lei P, Bao Y. Materials Reports, 2022, 36(14): 82.
(雷鹏, 鲍艳. 材料导报, 2022, 36(14): 82.).
[73]
Shi Z Y, Meng L X, Shi X L, Li H P, Zhang J Z, Sun Q Q, Liu X Y, Chen J Z, Liu S R. Nano Micro Lett., 2022, 14(1): 141.
[74]
Chen B D, Li H Q, Zhang S F, Lai X J, Zeng X R, Wu X R, Cheng X T, Liu H. Compos. A Appl. Sci. Manuf., 2022, 162: 107171.
[75]
Liu C, Xu L, Kong L Y, Xu Y Q, Zhou W, Qiang Q P, Tian L L, Chen W B, Cai M S, Lang T C, Han T, Liu B T. J. Mater. Chem. C, 2022, 10(36): 13064.
[76]
Zhao Z Q, Li Q J, Dong Y, Gong J X, Li Z, Qiao X R, Zhang J F. Energy Technol., 2021, 9(7): 2100166.
[77]
Liu J L, Yang Y N, Peng J, Wang H C, Chen D, Liu Y J, Yang L N, Chen H N. Soft Robotics, 2022, 9(3): 518.
[78]
Cha Y, Seo J, Kim J S, Park J M. Smart Mater. Struct., 2017, 26(5): 057002.
[79]
Lv Y H, Min L Z, Niu F X, Chen X Y, Zhao B, Liu Y, Pan K. Nanocomposites, 2022, 8(1): 81.

Funding

National Natural Science Foundation of China(22078188)
Xianyang City Qin Chuangyuan Science and Technology Innovation Special Project(2021ZDZX-GY-0007)
PDF(10549 KB)

Accesses

Citation

Detail

Sections
Recommended

/