Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities

Jiaye Li, Peng Zhang, Yuan Pan

Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 643-654.

PDF(4902 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4902 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 643-654. DOI: 10.7536/PC221103
Review

Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities

Author information +
History +

Abstract

Electrocatalytic carbon dioxide reduction (ECR) is an environmentally friendly energy conversion method that can convert CO2 into various high value-added fuels or chemicals. However, it usually is subject to low catalytic activity, low selectivity and low macrocyclic stability at high current densities. Benefitting from the advantages of high selectivity, high catalytic activity and high atom utilization, single atom catalysts show great potential in ECR process. Therefore, how to design single atom catalysts with high activity, high selectivity and high macrocyclic stability has become a research hot issue in this field. This paper reviews the research progress of a series of single atom catalysts in electrocatalytic carbon dioxide reduction at high current densities, and focuses on the activity regulation mechanisms, product selectivity regulation mechanisms and macrocyclic stability regulation mechanisms to enhance the ECR performance of single atom catalysts, which provides ideas for the systematic design and synthesis of ECR single atom catalysts. The opportunities and challenges of ECR single atom catalysts are prospected.

Key words

single atom catalysts / electrocatalytic CO2 reduction / regulation mechanisms / high current densities

Cite this article

Download Citations
Jiaye Li , Peng Zhang , Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities[J]. Progress in Chemistry. 2023, 35(4): 643-654 https://doi.org/10.7536/PC221103

References

[1]
Jia C, Shi Z, Zhao C. Curr. Opin. Green Sustain. Chem., 2022, 37: 100651.
[2]
Wu J H, Huang Y, Ye W, Li Y G. Adv. Sci., 2017, 4(11): 1700194.
[3]
Liu J, Cai Y M, Song R B, Ding S C, Lyu Z Y, Chang Y C, Tian H Y, Zhang X, Du D, Zhu W L, Zhou Y, Lin Y H. Mater. Today, 2021, 48: 95.
[4]
Guo J Y, Zhang W L, Zhang L H, Chen D T, Zhan J Y, Wang X L, Shiju N R, Yu F S. Adv. Sci., 2021, 8(23): 2102884.
[5]
Huang H W, Jia H H, Liu Z, Gao P F, Zhao J T, Luo Z L, Yang J L, Zeng J. Angew. Chem., 2017, 56(13): 3594.
[6]
Ji Y F, NØrskov J K, Chan K R. J. Phys. Chem. C, 2019, 123(7): 4256.
[7]
Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao S Z. J. Am. Chem. Soc., 2017, 139(49): 18093.
[8]
Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B A, Haasch R, Abiade J, Yarin A L, Salehi-Khojin A. Nat. Commun., 2013, 4: 2819.
[9]
Tornow C E, Thorson M R, Ma S C, Gewirth A A, Kenis P J A. J. Am. Chem. Soc., 2012, 134(48): 19520.
[10]
Zhang P, Li J, Pan Y. Acta Energiae Solaris Sinica., 2022, 43(6): 306.
[11]
Wang M M, Li M, Liu Y Q, Zhang C, Pan Y. Nano Res., 2022, 15(6): 4925.
[12]
Qu M, Chen Z, Sun Z Y, Zhou D N, Xu W J, Tang H, Gu H F, Liang T, Hu P F, Li G W, Wang Y, Chen Z, Wang T, Jia B B. Nano Res., 2023, 16: 2170.
[13]
Pan F P, Deng W, Justiniano C, Li Y. Appl. Catal. B, 2018, 226: 463.
[14]
Ju W, Bagger A, Hao G P, Varela A S, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J, Strasser P. Nat. Commun., 2017, 8: 944.
[15]
Fan Q K, Gao P F, Ren S, Qu Y T, Kong C C, Yang J, Wu Y E. Nano Res., 2023, 16: 2003.
[16]
Yang F Q, Mao X Y, Ma M F, Jiang C, Zhang P X, Wang J, Deng Q, Zeng Z L, Deng S G. Carbon, 2020, 168: 528.
[17]
Yang H P, Lin Q, Wu Y, Li G D, Hu Q, Chai X Y, Ren X Z, Zhang Q L, Liu J H, He C X. Nano Energy, 2020, 70: 104454.
[18]
Jiang K, Siahrostami S, Akey A J, Li Y B, Lu Z Y, Lattimer J, Hu Y F, Stokes C, Gangishetty M, Chen G X, Zhou Y W, Hill W, Cai W B, Bell D, Chan K R, NØrskov J K, Cui Y, Wang H T. Chem, 2017, 3(6): 950.
[19]
Pang Y J, Li J, Wang Z Y, Tan C S, Hsieh P L, Zhuang T T, Liang Z Q, Zou C Q, Wang X, De Luna P, Edwards J P, Xu Y, Li F W, Dinh C T, Zhong M, Lou Y H, Wu D, Chen L J, Sargent E H, Sinton D. Nat. Catal., 2019, 2(3): 251.
[20]
Li C W, Ciston J, Kanan M W. Nature, 2014, 508(7497): 504.
[21]
Zhang N Q, Zhang X X, Tao L, Jiang P, Ye C L, Lin R, Huang Z W, Li A, Pang D W, Yan H, Wang Y, Xu P, An S F, Zhang Q H, Liu L C, Du S X, Han X D, Wang D S, Li Y D. Angew. Chem, 2021, 60(11): 6170.
[22]
Rosen B A, Salehi-Khojin A, Thorson M R, Zhu W, Whipple D T, Kenis P J A, Masel R I. Science, 2011, 334(6056): 643.
[23]
Zhang Q Q, Guan J Q. Adv. Funct. Mater., 2020, 30(31): 2000768.
[24]
Chen Y, Hu F, Hao Y N, Wang Y H, Xie Y Y, Wang H, Yin L J, Yu D S, Yang H C, Ma J, Kai D, Li L L, Peng S J. Nano Res., 2022, 15(4): 3283.
[25]
He Q, Lee J H, Liu D B, Liu Y M, Lin Z X, Xie Z H, Hwang S, Kattel S, Song L, Chen J G. Adv. Funct. Mater., 2020, 30(17): 2000407.
[26]
Yuan X T, Zhang L, Li L L, Dong H, Chen S, Zhu W J, Hu C L, Deng W Y, Zhao Z J, Gong J L. J. Am. Chem. Soc., 2019, 141(12): 4791.
[27]
Bok J, Lee S Y, Lee B H, Kim C, Le Tri Nguyen D, Kim J W, Jung E, Lee C W, Jung Y, Lee H S, Kim J, Lee K, Ko W, Kim Y S, Cho S P, Yoo J S, Hyeon T, Hwang Y J. J. Am. Chem. Soc., 2021, 143(14): 5386.
[28]
Li Y, Adli N M, Shan W T, Wang M Y, Zachman M J, Hwang S, Tabassum H, Karakalos S, Feng Z X, Wang G F, Li Y C, Wu G. Energy Environ. Sci., 2022, 15(5): 2108.
[29]
Gu J, Hsu C S, Bai L C, Chen H M, Hu X L. Science, 2019, 364(6445): 1091.
[30]
Wang C, Ren H A, Wang Z H, Guan Q X, Liu Y P, Li W. Appl. Catal. B, 2022, 304: 120958.
[31]
Pan Y, Lin R, Chen Y. J. Am. Chem. Soc., 2018, 140(12): 4218.
[32]
Zhu C Z, Fu S F, Shi Q R, Du D, Lin Y H. Angew. Chem. Int. Ed., 2017, 56(45): 13944.
[33]
Chen S H, Wang B Q, Zhu J X, Wang L Q, Ou H H, Zhang Z D, Liang X, Zheng L R, Zhou L, Su Y Q, Wang D S, Li Y D. Nano Lett., 2021, 21(17): 7325.
[34]
Tan X, Tahini H A, Arandiyan H, Smith S C. Adv. Theory Simul., 2019, 2(3): 1800094.
[35]
Hu C H, Wang Y J, Chen J M, Wang H F, Shen K, Tang K W, Chen L Y, Li Y W. Small, 2022, 18(22): 2201391.
[36]
Shang H S, Wang T, Pei J J, Jiang Z L, Zhou D N, Wang Y, Li H J, Dong J C, Zhuang Z B, Chen W X, Wang D S, Zhang J T, Li Y D. Angew. Chem, 2020, 59(50): 22465.
[37]
Lu P L, Tan X, Zhao H T, Xiang Q, Liu K L, Zhao X X, Yin X M, Li X Z, Hai X, Xi S B, Wee A T S, Pennycook S J, Yu X F, Yuan M L, Wu J B, Zhang G J, Smith S C, Yin Z Y. ACS Nano, 2021, 15(3): 5671.
[38]
Chen Z, Gao M R, Duan N Q, Zhang J G, Zhang Y Q, Fan T T, Zhang J W, Dong Y Y, Li J H, Liu Q X, Yi X D, Luo J L. Appl. Catal. B Environ., 2020, 277: 119252.
[39]
Lee M Y, Ringe S, Kim H, Kang S, Kwon Y. ACS Energy Lett., 2020, 5(9): 2987.
[40]
Wen G B, Ren B H, Park M G, Yang J, Dou H Z, Zhang Z, Deng Y P, Bai Z Y, Yang L, Gostick J, Botton G A, Hu Y F, Chen Z W. Angew. Chem. Int. Ed., 2020, 59(31): 13124.
[41]
Ni W, Gao Y, Lin Y, Ma C, Guo X, Wang S, Zhang S. ACS Catalysis, 2021, 11(9): 5212.
[42]
Wang Q Y, Liu K, Fu J W, Cai C, Li H, Long Y, Chen S Y, Liu B, Li H M, Li W Z, Qiu X Q, Zhang N, Hu J H, Pan H, Liu M. Angew. Chem., 2021, 60(48): 25241.
[43]
Jia C, Li S N, Zhao Y, Hocking R K, Ren W H, Chen X J, Su Z, Yang W F, Wang Y, Zheng S S, Pan F, Zhao C. Adv. Funct. Mater., 2021, 31(51): 2107072.
[44]
Li Z, Wu R, Xiao S H, Yang Y C, Lai L, Chen J S, Chen Y. Chem. Eng. J., 2022, 430: 132882.
[45]
Sun X H, Tuo Y X, Ye C L, Chen C, Lu Q, Li G N, Jiang P, Chen S H, Zhu P, Ma M, Zhang J, Bitter J H, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2021, 60(44): 23614.
[46]
Li K, Zhang S B, Zhang X L, Liu S, Jiang H S, Jiang T L, Shen C Y, Yu Y, Chen W. Nano Lett., 2022, 22(4): 1557.
[47]
Wang Q Y, Liu K, Hu K M, Cai C, Li H, Li H M, Herran M, Lu Y R, Chan T S, Ma C, Fu J W, Zhang S G, Liang Y, CortÉs E, Liu M. Nat. Commun., 2022, 13: 6082.
[48]
Hou J, Fan Z, Luo R, Zhang Y, Zhang B, Zhai P, Zhang Y, Wang C, Gao J, Zhou W, Sun L. Angew. Chem., 2023, 62(7),DOI:10.1002/anie.202216326.
[49]
Jiao J Q, Lin R, Liu S J, Cheong W C, Zhang C, Chen Z, Pan Y, Tang J G, Wu K L, Hung S F, Chen H M, Zheng L R, Lu Q, Yang X, Xu B J, Xiao H, Li J, Wang D S, Peng Q, Chen C, Li Y D. Nat. Chem., 2019, 11(3): 222.
[50]
Yi J D, Gao X, Zhou H, Chen W, Wu Y. Angew. Chem., 2022, 61(47),DOI:10.1002/anie.202212329.
[51]
Zhang Z D, Zhu J X, Chen S H, Sun W M, Wang D S. Angew. Chem, 2023, 62(3),DOI:10.1002/anie.202215136.
[52]
Zheng T T, Liu C X, Guo C X, Zhang M L, Li X, Jiang Q, Xue W Q, Li H L, Li A W, Pao C W, Xiao J P, Xia C, Zeng J. Nat. Nanotechnol., 2021, 16(12): 1386.
[53]
Zhang Y, Li P, Zhao C M, Zhou G, Zhou F Y, Zhang Q T, Su C L, Wu Y E. Sci. Bull., 2022, 67(16): 1679.
[54]
Wei X F, Wei S X, Cao S F, Hu Y Y, Zhou S N, Liu S Y, Wang Z J, Lu X Q. Appl. Surf. Sci., 2021, 564: 150423.
[55]
Yang H P, Wu Y, Li G D, Lin Q, Hu Q, Zhang Q L, Liu J H, He C X. J. Am. Chem. Soc., 2019, 141(32): 12717.
[56]
Cai Y M, Fu J J, Zhou Y, Chang Y C, Min Q H, Zhu J J, Lin Y H, Zhu W L. Nat. Commun., 2021, 12: 586.
[57]
Qi R, Zhu B E, Han Z K, Gao Y. ACS Catal., 2022, 12(14): 8269.
[58]
Zhang J, Xu T S, Yuan D, Tian J L, Ma D W.J. CO2 Util., 2021, 43: 101367.
[59]
Gao Z Y, Meng Y, Koso A, Mishima J, Xie B, Ni Z M, Xia S J. Colloids Surf. A, 2022, 648: 129365.
[60]
Zhao S Y, Wang T S, Zhou G M, Zhang L J, Lin C, Veder J P, Johannessen B, Saunders M, Yin L C, Liu C, De Marco R, Yang S Z, Zhang Q F, Jiang S P. ChemNanoMat, 2020, 6(7): 997.
[61]
Wang H, Chuai H, Chen X, Lin J, Zhang S, Ma X. ACS Appl. Mater. Interfaces. 2023, 15(1): 1376.
[62]
Zhang Z D, Wang D S. J. Mater. Chem. A, 2022, 10(11): 5863.
[63]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.
[64]
Ji S F, Chen Y J, Wang X L, Zhang Z D, Wang D S, Li Y D. Chem. Rev., 2020, 120(21): 11900.
[65]
Yang D X, Zhu Q G, Chen C J, Liu H Z, Liu Z M, Zhao Z J, Zhang X Y, Liu S J, Han B X. Nat. Commun., 2019, 10: 677.
[66]
Sebastián-Pascual P, Mezzavilla S, Stephens I E L, Escudero-Escribano M. ChemCatChem, 2019, 11(16): 3626.
[67]
Burdyny T, Smith W A. Energy Environ. Sci., 2019, 12(5): 1442.
[68]
Ampelli C, Genovese C, Errahali M, Gatti G, Marchese L, Perathoner S, Centi G. J. Appl. Electrochem., 2015, 45(7): 701.
[69]
Gabardo C M, Seifitokaldani A, Edwards J P, Dinh C T, Burdyny T, Kibria M G, O’Brien C P, Sargent E H, Sinton D. Energy Environ. Sci., 2018, 11(9): 2531.
[70]
Zhang L X, Hu S Q, Zhu X F, Yang W S. J. Energy Chem., 2017, 26(4): 593.
[71]
Zhang X M, Song Y F, Wang G X, Bao X H. J. Energy Chem., 2017, 26(5): 839.
[72]
Salvatore D A, Weekes D M, He J F, Dettelbach K E, Li Y C, Mallouk T E, Berlinguette C P. ACS Energy Lett., 2018, 3(1): 149.
[73]
Marepally B C, Ampelli C, Genovese C, Saboo T, Perathoner S, Wisser F M, Veyre L, Canivet J, Alessandra Quadrelli E, Centi G. ChemSusChem, 2017, 10(22): 4442.

Funding

National Natural Science Foundation of China(22108306)
Taishan Scholars Research Project(tsqn201909065)
Excellent Youth Science Foundation of Shandong Province(ZR2021YQ15)
Shandong Provincial Natural Science Foundation, China(ZR2020QB174)
PDF(4902 KB)

Accesses

Citation

Detail

Sections
Recommended

/