Photovoltaic Cells Based on Carbon Nanotubes

Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin

Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 421-432.

PDF(13773 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(13773 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 421-432. DOI: 10.7536/PC221106
Review

Photovoltaic Cells Based on Carbon Nanotubes

Author information +
History +

Abstract

Carbon nanotubes (CNTs) are ideal materials for building photovoltaic cells due to their unique one-dimensional structure and excellent photoelectric properties. In this paper, we review recent structural design, fabrication method and device performance of CNT-based photovoltaic cells and different functional roles of CNTs in these devices. Firstly, the structure and photoelectric properties of CNTs are introduced. Then, we emphatically discuss the operation principles, the fabrication methods and the advantages and shortage of the photovoltaic cells with CNTs used as the photoelectric conversion materials, conducting electrodes and carrier transport layers in the devices. The applications of carbon nanotubes in Micro photovoltaic cell,carbon nanotube/silicon heterojunction photovoltaic cells, dye sensitized photovoltaic cells, perovskite photovoltaic cells, organic photovoltaic cells and flexible photovoltaic cells are introduced. Finally, the advantages and challenges of CNT-based photovoltaic cells are summarized. This paper will provide new idea and reference for the design and fabrication of novel carbon-based photovoltaic cells.

Key words

carbon nanotube / photovoltaic cells / photoelectric conversion / power conversion efficiency / transparent conductive electrode

Cite this article

Download Citations
Wang Long , Zhou Qingping , Wu Zhaofeng , et al . Photovoltaic Cells Based on Carbon Nanotubes[J]. Progress in Chemistry. 2023, 35(3): 421-432 https://doi.org/10.7536/PC221106

References

[1]
Jurasz J, Canales F A, Kies A, Guezgouz M, Beluco A. Sol. Energy, 2020, 195: 703.
[2]
Hayat M B, Ali D, Monyake K C, Alagha L, Ahmed N. Int. J. Energy Res., 2019, 43(3): 1049.
[3]
Wang J Q, Xie Z M, Yeow J T W. ECS J. Solid State Sci. Technol., 2020, 9(10): 105004.
[4]
Fukuda K, Yu K, Someya T. Adv. Energy Mater., 2020, 10(25): 2000765.
[5]
Ortiz-Cervantes C, Carmona-Monroy P, Solis-Ibarra D. ChemSusChem, 2019, 12(8): 1560.
[6]
Yun S N, Qin Y, Uhl A R, Vlachopoulos N, Yin M, Li D D, Han X G, Hagfeldt A. Energy Environ. Sci., 2018, 11(3): 476.
[7]
Qiu L B, Deng J, Lu X, Yang Z B, Peng H S. Angew. Chem. Int. Ed., 2014, 53(39): 10425.
[8]
Kaltenbrunner M, Adam G, Daniel Głowacki E, Drack M, Schwödiauer R, Leonat L, Apaydin D H, Groiss H, Scharber M C, White M S, Sariciftci N S, Bauer S. Nat. Mater., 2015, 14(10): 1032.
[9]
Zhang Y K, Wu Z W, Li P, Ono L K, Qi Y B, Zhou J X, Shen H, Surya C, Zheng Z J. Adv. Energy Mater., 2018, 8(1): 1701569.
[10]
Gu S, Lin R X, Han Q L, Gao Y, Tan H R, Zhu J. Adv. Mater., 2020: 1907392.
[11]
Zhao C C, Wang J X, Zhao X Y, Du Z L, Yang R Q, Tang J G. Nanoscale, 2021, 13(4): 2181.
[12]
Urbani M, Ragoussi M E, Nazeeruddin M K, Torres T. Coord. Chem. Rev., 2019, 381: 1.
[13]
Jalalvand A R, Ghobadi S, Akbari V, Goicoechea H C, Faramarzi E, Mahmoudi M. Sens. Bio Sens. Res., 2019, 25: 100297.
[14]
Zhao X, Park N G. Photonics, 2015, 2(4): 1139.
[15]
Li W J, Zheng J H, Hu B, Fu H C, Hu M W, Veyssal A, Zhao Y Z, He J H, Leo Liu T, Ho-Baillie A, Jin S. Nat. Mater., 2020, 19(12): 1326.
[16]
Abate A, Correa-Baena J P, Saliba M, Su’ait M S, Bella F. Chem. Eur. J., 2018, 24(13): 3083.
[17]
Tumbul A, Aslan F, Gökta塂 A, Mutlu I H. J. Alloys Compd., 2019, 781: 280.
[18]
Fagiolari L, Bella F. Energy Environ. Sci., 2019, 12(12): 3437.
[19]
Li D D, Lai W Y, Zhang Y Z, Huang W. Adv. Mater., 2018, 30(10): 1704738.
[20]
Lee S K, Rana K, Ahn J H. J. Phys. Chem. Lett., 2013, 4(5): 831.
[21]
De Volder M F L, Tawfick S H, Baughman R H, Hart A J. Science, 2013, 339(6119): 535.
[22]
Ma P C, Siddiqui N A, Marom G, Kim J K. Compos. A Appl. Sci. Manuf., 2010, 41(10): 1345.
[23]
Wen L, Li F, Cheng H M. Adv. Mater., 2016, 28(22): 4306.
[24]
Jung S, Lee J, Seo J, Kim U, Choi Y, Park H. Nano Lett., 2018, 18(2): 1337.
[25]
Fu X M, Xu L M, Li J X, Sun X M, Peng H S. Carbon, 2018, 139: 1063.
[26]
Tune D D, Flavel B S. Adv. Energy Mater., 2018, 8(15): 1703241.
[27]
Luo Q, Wu R G, Ma L T, Wang C J, Liu H, Lin H, Wang N, Chen Y, Guo Z H. Adv. Funct. Mater., 2021, 31(6): 2004765.
[28]
Batmunkh M, Biggs M J, Shapter J G. Small, 2015, 11(25): 2963.
[29]
Yu L P, Shearer C, Shapter J. Chem. Rev., 2016, 116(22): 13413.
[30]
Mann D, Javey A, Kong J, Wang Q, Dai H J. Nano Lett., 2003, 3(11): 1541.
[31]
Chen G H, Futaba D N, Sakurai S, Yumura M, Hata K J. Carbon, 2014, 67: 318.
[32]
in het Panhuis M. J. Mater. Chem., 2006, 16(36): 3598.
[33]
Frank S, Poncharal P, Wang Z L, de Heer W A. Science, 1998, 280(5370): 1744.
[34]
Guo J, Lundstrom M, Datta S. Appl. Phys. Lett., 2002, 80(17): 3192.
[35]
Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M, Park H. Nature, 2001, 411(6838): 665.
[36]
Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T. Nature, 1996, 382(6586): 54.
[37]
Odom T W, Huang J L, Kim P, Lieber C M. Nature, 1998, 391(6662): 62.
[38]
Blackburn J L, Barnes T M, Beard M C, Kim Y H, Tenent R C, McDonald T J, To B, Coutts T J, Heben M J. ACS Nano, 2008, 2(6): 1266.
[39]
Huang Q J, Zhu Y. Adv. Mater. Technol., 2019, 4(5): 1800546.
[40]
Ferguson V, Silva S R P, Zhang W. Energy Environ. Mater., 2019, 2(2): 107.
[41]
Wang C Y, Xia K L, Wang H M, Liang X P, Yin Z, Zhang Y Y. Adv. Mater., 2019, 31(9): 1801072.
[42]
Cinke M, Li J, Chen B, Cassell A, Delzeit L, Han J, Meyyappan M. Chem. Phys. Lett., 2002, 365(1/2): 69.
[43]
Chen C X, Lu Y, Kong E S, Zhang Y F, Lee S T. Small, 2008, 4(9): 1313.
[44]
Chen C X, Song C J, Yang J R, Chen D Q, Zhu W H, Liao C H, Dong X S, Liu X D, Wei L M, Hu N T, He R, Zhang Y F. Nano Energy, 2017, 32: 280.
[45]
Wei J Q, Jia Y, Shu Q K, Gu Z Y, Wang K L, Zhuang D M, Zhang G, Wang Z C, Luo J B, Cao A Y, Wu D H. Nano Lett., 2007, 7(8): 2317.
[46]
Jia Y, Cao A Y, Bai X, Li Z, Zhang L H, Guo N, Wei J Q, Wang K L, Zhu H W, Wu D H, Ajayan P M. Nano Lett., 2011, 11(5): 1901.
[47]
Zhao X W, Wu H S, Yang L S, Wu Y Z, Sun Y P, Shang Y Y, Cao A Y. Carbon, 2019, 147: 164.
[48]
Zhao X W, Xu W J, Wu Y Z, Wu H S, Xia Z Y, Xu H Y, Shang Y Y, Wei J Q, Cao A Y. Nano Res., 2022, 15(3): 2497.
[49]
Jin M Q, Li H L, Lou Q, Du Q, Huang Q S, Shen Z T, Li F M, Chen C. EcoMat, 2022, 4(2): e12166.
[50]
Muchuweni E, Mombeshora E T, Martincigh B S, Nyamori V O. Front. Chem., 2022, 9: 733552.
[51]
Zhu Y Y, Shu L, Fan Z Y. Chem. Res. Chin. Univ., 2020, 36(3): 366.
[52]
Rowell M W, Topinka M A, McGehee M D, Prall H J, Dennler G, Sariciftci N S, Hu L B, Gruner G. Appl. Phys. Lett., 2006, 88(23): 233506.
[53]
Salvatierra R V, Cava C E, Roman L S, Zarbin A J G. Adv. Funct. Mater., 2013, 23(12): 1490.
[54]
Ji T, Tan L C, Bai J X, Hu X T, Xiao S Q, Chen Y W. Carbon, 2016, 98: 15.
[55]
Zhang Z X, Lv R T, Jia Y, Gan X, Zhu H W, Kang F Y. Appl. Sci., 2018, 8(2): 152.
[56]
Yang M K, Lee J K. Electron. Mater. Lett., 2020, 16(6): 573.
[57]
Lu L Y, Xu T, Chen W, Lee J M, Luo Z Q, Jung I H, Park H I, Kim S O, Yu L P. Nano Lett., 2013, 13(6): 2365.
[58]
Fan Q X, Zhang Q, Zhou W B, Xia X G, Yang F, Zhang N, Xiao S Q, Li K W, Gu X G, Xiao Z J, Chen H L, Wang Y C, Liu H P, Zhou W Y, Xie S S. Nano Energy, 2017, 33: 436.
[59]
Li Z, Kulkarni S A, Boix P P, Shi E Z, Cao A Y, Fu K W, Batabyal S K, Zhang J, Xiong Q H, Wong L H, Mathews N, Mhaisalkar S G. ACS Nano, 2014, 8(7): 6797.
[60]
Aitola K, Sveinbjörnsson K, Correa-Baena J P, Kaskela A, Abate A, Tian Y, Johansson E M J, Grätzel M, Kauppinen E I, Hagfeldt A, Boschloo G. Energy Environ. Sci., 2016, 9(2): 461.
[61]
Luo Q, Ma H, Zhang Y, Yin X W, Yao Z B, Wang N, Li J B, Fan S S, Jiang K L, Lin H. J. Mater. Chem. A, 2016, 4(15): 5569.
[62]
Amini A, Abdizadeh H, Golobostanfard M R. ACS Appl. Energy Mater., 2020, 3(7): 6195.
[63]
Lee J H, Jang Y J, Kim D W, Cheruku R, Thogiti S, Ahn K S, Kim J H. Chem. Pap., 2019, 73(11): 2749.
[64]
Dou Y Y, Yan N F, Li G R, Gao X P. J. Appl. Electrochem., 2012, 18(4): 301.
[65]
Zheng L, Bao C, Lei S J, Wang J L, Li F X, Sun P P, Huang N, Fang L, Sun X H. Carbon, 2018, 133: 423.
[66]
Yoon J, Kim U, Yoo Y, Byeon J, Lee S K, Nam J S, Kim K, Zhang Q, Kauppinen E I, Maruyama S, Lee P, Jeon I. Adv. Sci., 2021, 8(7): 2004092.
[67]
Jeon I, Cui K H, Chiba T, Anisimov A, Nasibulin A G, Kauppinen E I, Maruyama S, Matsuo Y. J. Am. Chem. Soc., 2015, 137(25): 7982.
[68]
Yan Y, Li W, Cai J L, Chen M X, Mao Y C, Chen X L, Gurney R S, Liu D, Huang F, Wang T. Mater. Chem. Front., 2018, 2(10): 1859.
[69]
Yan W B, He Z X, Jiang J J, Lu D, Gong Y C, Yang W S, Xia R D, Huang W, Xin H. J. Mater. Chem. C, 2020, 8(42): 14773.
[70]
Li M Y, Zha W S, Han Y F, Liu B W, Luo Q, Ma C Q. Org. Electron., 2021, 96: 106257.
[71]
Chaudhary J, Gupta S K, Verma A S, Negi C M S. J. Mater. Sci., 2020, 55(10): 4345.
[72]
Bai S, Jin Y Z, Liang X Y, Ye Z Z, Wu Z W, Sun B Q, Ma Z F, Tang Z, Wang J P, Würfel U, Gao F, Zhang F L. Adv. Energy Mater., 2015, 5(5): 1401606.
[73]
Yu Z K, Fu W F, Liu W Q, Zhang Z Q, Liu Y J, Yan J L, Ye T, Yang W T, Li H Y, Chen H Z. Chin. Chemical Lett., 2017, 28(1): 13.
[74]
Hu W, Liu T, Yin X W, Liu H, Zhao X Y, Luo S P, Guo Y, Yao Z B, Wang J S, Wang N, Lin H, Guo Z H. J. Mater. Chem. A, 2017, 5(4): 1434.
[75]
Hussain S, Liu H L, Vikraman D, Hussain M, Jaffery S H A, Ali A, Kim H S, Kang J, Jung J. J. Alloys Compd., 2021, 885: 161039.
[76]
Markose K K, Jasna M, Subha P P, Antony A, Jayaraj M K. Sol. Energy, 2020, 211: 158.

Funding

National Natural Science Foundation of China for Excellent Young Scholars(61622404)
National Natural Science Foundation of China(62074098)
Chang Jiang (Cheung Kong) Scholars Program of Ministry of Education of China(Q2017081)
Project from Zhejiang Fulai New Materials Co., Ltd.
PDF(13773 KB)

Accesses

Citation

Detail

Sections
Recommended

/