Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides

Yue Yang, Ke Xu, Xuelu Ma

Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 543-559.

PDF(9130 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9130 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 543-559. DOI: 10.7536/PC221122
Review

Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides

Author information +
History +

Abstract

Metal oxides have been widely investigated in experimental and industrial catalysis due to their excellent activity, selectivity and stability in many important reactions, especially in some redox reactions, such as CO2 reduction, water-gas shift (WGS) reaction, reduction of nitrogen, oxygen evolution reaction. It has been proved that metal oxides usually contain many defects, which are the active sites in catalytic reactions, and oxygen vacancies (OVs) are one of the most representative species among them. OVs affect crystal structure and electronic structure of the materials, thus affecting the catalytic activity, so they have great significance to be studied. In this review, we firstly introduce the classification and regulation strategies of OVs based on the formation of them in metal oxides. Secondly, the characteristics and mechanisms of OVs in thermocatalysis, electrocatalysis and photocatalysis were discussed. Finally, the potential applications and future challenges were summarized and prospected.

Key words

oxygen vacancy / metal oxides / mechanism / electronic structure / catalyst design

Cite this article

Download Citations
Yue Yang , Ke Xu , Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides[J]. Progress in Chemistry. 2023, 35(4): 543-559 https://doi.org/10.7536/PC221122

References

[1]
Gao P, Li S G, Bu X N, Dang S S, Liu Z Y, Wang H, Zhong L S, Qiu M H, Yang C G, Cai J, Wei W, Sun Y H. Nat. Chem., 2017, 9(10): 1019.
[2]
Gu Z X, Yang N, Han P, Kuang M, Mei B B, Jiang Z, Zhong J, Li L, Zheng G F. Small Methods, 2018: 1800449.
[3]
Geng Z G, Kong X D, Chen W W, Su H Y, Liu Y, Cai F, Wang G X, Zeng J. Angew. Chem. Int. Ed., 2018, 57(21): 6054.
[4]
Varandili S B, Huang J F, Oveisi E, De Gregorio G L, Mensi M, Strach M, Vavra J, Gadiyar C, Bhowmik A, Buonsanti R. ACS Catal., 2019, 9(6): 5035.
[5]
Chen X, Li Q, Zhang M, Li J J, Cai S C, Chen J, Jia H P. ACS Appl. Mater. Interfaces, 2020, 12(35): 39304.
[6]
Jiang L S, Li Y, Wu X Y, Zhang G K. Sci. China Mater., 2021, 64(9): 2230.
[7]
Chen J B, Iyemperumal S K, Fenton T, Carl A, Grimm R, Li G H, Deskins N A. ACS Catal., 2018, 8(11): 10464.
[8]
Yu H J, Li J Y, Zhang Y H, Yang S Q, Han K L, Dong F, Ma T Y, Huang H W. Angew. Chem. Int. Ed., 2019, 58(12): 3880.
[9]
Xu M, Yao S Y, Rao D M, Niu Y M, Liu N, Peng M, Zhai P, Man Y, Zheng L R, Wang B, Zhang B S, Ma D, Wei M. J. Am. Chem. Soc., 2018, 140(36): 11241.
[10]
Yang C H, Zhu Y T, Liu J Q, Qin Y C, Wang H Q, Liu H L, Chen Y N, Zhang Z C, Hu W P. Nano Energy, 2020, 77: 105126.
[11]
Xu Y S, Liu X H, Cao N, Xu X, Bi L. Sustain. Mater. Technol., 2021, 27: e00229.
[12]
Li H, Shang J, Ai Z H, Zhang L Z. J. Am. Chem. Soc., 2015, 137(19): 6393.
[13]
Xue X L, Chen R P, Chen H W, Hu Y, Ding Q Q, Liu Z T, Ma L B, Zhu G Y, Zhang W J, Yu Q, Liu J, Ma J, Jin Z. Nano Lett., 2018, 18(11): 7372.
[14]
Ma X L, Liu J C, Xiao H, Li J. J. Am. Chem. Soc., 2018, 140(1): 46.
[15]
Yu K, Lou L L, Liu S X, Zhou W Z. Adv. Sci., 2020, 7(2): 1901970.
[16]
Zhu K Y, Shi F, Zhu X F, Yang W S. Nano Energy, 2020, 73: 104761.
[17]
Zhuang G X, Chen Y W, Zhuang Z Y, Yu Y, Yu J G. Sci. China Mater., 2020, 63(11): 2089.
[18]
Liu F Y, Chen C, Guo H W, Saghayezhian M, Wang G M, Chen L N, Chen W, Zhang J D, Plummer E W. Surf. Sci., 2017, 655: 25.
[19]
Takuya M, Hiroyuki T, Tomoji K, Shichio K. Jap. J. Appl. Phys., 1993, 295: 35.
[20]
Diebold U, Lehman J, Mahmoud T, Kuhn M, Leonardelli G, Hebenstreit W, Schmid M, Varga P. Surf. Sci., 1998, 411(1/2): 137.
[21]
Suzuki S, Fukui K I, Onishi H, Iwasawa Y. Phys. Rev. Lett., 2000, 84(10): 2156.
[22]
Xie C, Zhou B, Zhou L, Wu Y J, Wang S Y. Prog. Chem., 2020, 32(8): 1172.
谢超, 周波, 周灵, 吴雨洁, 王双印. 化学进展. 2020, 32 (8): 1172.).
[23]
Guzman J, Carrettin S, Corma A. J. Am. Chem. Soc., 2005, 127(10): 3286.
[24]
Wu Z L, Li M J, Howe J, Meyer H M III, Overbury S H. Langmuir, 2010, 26(21): 16595.
[25]
Lee Y J, He G H, Akey A J, Si R, Flytzani-Stephanopoulos M, Herman I P. J. Am. Chem. Soc., 2011, 133(33): 12952.
[26]
de Castro Silva I, Sigoli F A, Mazali I O. J. Phys. Chem. C, 2017, 121(23): 12928.
[27]
Zheng J Y, Lyu Y H, Wang R L, Xie C, Zhou H J, Jiang S P, Wang S Y. Nat. Commun., 2018, 9: 3572.
[28]
Zheng J Y, Lyu Y H, Xie C, Wang R L, Tao L, Wu H B, Zhou H J, Jiang S P, Wang S Y. Adv. Mater., 2018, 30(31): 1801773.
[29]
Liu Y W, Cheng H, Lyu M J, Fan S J, Liu Q H, Zhang W S, Zhi Y D, Wang C M, Xiao C, Wei S Q, Ye B J, Xie Y. J. Am. Chem. Soc., 2014, 136(44): 15670.
[30]
Zhou P, Wang Y Y, Xie C, Chen C, Liu H W, Chen R, Huo J, Wang S Y. Chem. Commun., 2017, 53(86): 11778.
[31]
Schaub R, Thostrup P, Lopez N, Lægsgaard E, Stensgaard I, NØrskov J K, Besenbacher F. Phys. Rev. Lett., 2001, 87(26): 266104.
[32]
Yoon B, Ha¨kkinen H, Landman U, Wörz A S, Antonietti J M, Abbet S, Ken J D, Heiz U. Science, 2005, 307(5708): 403.
[33]
Ganduglia-Pirovano M V, Hofmann A, Sauer J. Surf. Sci. Rep., 2007, 62(6): 219.
[34]
Ke J, Xiao J W, Zhu W, Liu H C, Si R, Zhang Y W, Yan C H. J. Am. Chem. Soc., 2013, 135(40): 15191.
[35]
Liu B, Liu J, Ma S C, Zhao Z, Chen Y, Gong X Q, Song W Y, Duan A J, Jiang G Y. J. Phys. Chem. C, 2016, 120(4): 2271.
[36]
Werner K, Weng X F, Calaza F, Sterrer M, Kropp T, Paier J, Sauer J, Wilde M, Fukutani K, Shaikhutdinov S, Freund H J. J. Am. Chem. Soc., 2017, 139(48): 17608.
[37]
Li M, Pan X C, Jiang M Q, Zhang Y F, Tang Y W, Fu G T. Chem. Eng. J., 2020, 395: 125160.
[38]
He L N. Chin. Sci. Bull., 2021, 66(7): 713.
[39]
Lin X T, Li S J, He H, Wu Z, Wu J L, Chen L M, Ye D Q, Fu M L. Appl. Catal. B Environ., 2018, 223: 91.
[40]
Liu Y W, Xiao C, Li Z, Xie Y. Adv. Energy Mater., 2016, 6(23): 1600436.
[41]
Jiang S H, Zhang R Y, Liu H X, Rao Y, Yu Y N, Chen S, Yue Q, Zhang Y N, Kang Y J. J. Am. Chem. Soc., 2020, 142(14): 6461.
[42]
Zhu W C, Chen H, Zhang M J, Yang X Z, Feng H B. Appl. Surf. Sci., 2021, 544: 148813.
[43]
Widmann D, Behm R J. Accounts. Chem. Res., 2014, 47 (3): 740.
[44]
Liu S, Wu X D, Tang J, Cui P Y, Jiang X Q, Chang C G, Liu W, Gao Y X, Li M, Weng D. Catal. Today, 2017, 281: 454.
[45]
Yuan K, Zhang Y W. J. Chin. Soc. Rare Earths, 2020, 38(3): 326.
袁堃, 张亚文. 中国稀土学报, 2020, 38(3): 326.).
[46]
Lin M H, Song W L, Zeng L, Zeng D W, Xie C S. Mater. Rep., 2014, 28(8): 22.
李明辉, 宋武林, 曾磊, 曾大文, 谢长生. 材料导报. 2014, 28 (8): 22.).
[47]
Hao L, Zhang H N, Yan J C, Cheng L J, Guan S J, Lu Y. J. Tianjing Univ. Sci. Technol., 2018, 33(55): 2.
郝亮, 张慧娜, 闫建成, 程丽君, 关苏军, 鲁云. 天津科技大学学报, 2018, 33 (55): 2.).
[48]
Cronemeyer D C. Phys. Rev., 1959, 113(5): 1222.
[49]
Lv K L, Xiang Q J, Yu J G. Appl. Catal. B Environ., 2011, 104(3/4): 275.
[50]
Xu H Y, Huang Y H, Liu S, Xu K W, Ma F, Chu P K. RSC Adv., 2016, 6(83): 79383.
[51]
Over H, Kim Y D, Seitsonen A P, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G. Science, 2000, 287(5457): 1474.
[52]
Liu D L, Wang C H, Yu Y F, Zhao B H, Wang W C, Du Y H, Zhang B. Chem, 2019, 5(2): 376.
[53]
He W J, Sun Y J, Jiang G M, Li Y H, Zhang X M, Zhang Y X, Zhou Y, Dong F. Appl. Catal. B Environ., 2018, 239: 619.
[54]
Jiang H, Liu J, Li M, Tian L, Ding G, Chen P, Luo X. Chin. J. Catal., 2018, 39 (4): 747.
[55]
Kim J K, Chai S U, Ji Y F, Levy-Wendt B, Kim S H, Yi Y, Heinz T F, NØrskov J K, Park J H, Zheng X L. Adv. Energy Mater., 2018, 8(29): 1801717.
[56]
Nolan M. J. Mater. Chem., 2011, 21(25): 9160.
[57]
Tan H Q, Zhao Z, Zhu W B, Coker E N, Li B S, Zheng M, Yu W X, Fan H Y, Sun Z C. ACS Appl. Mater. Interfaces, 2014, 6(21): 19184.
[58]
Han Z S, Choi C, Hong S, Wu T S, Soo Y L, Jung Y, Qiu J S, Sun Z Y. Appl. Catal. B Environ., 2019, 257: 117896.
[59]
Zhang J B, Yin R G, Shao Q, Zhu T, Huang X Q. Angew. Chem. Int. Ed., 2019, 58(17): 5609.
[60]
Zhao Y, An H Z, Dong G J, Feng J, Wei T, Ren Y M, Ma J. Chem. Eng. J., 2020, 388: 124371.
[61]
Wu M D, Chen S Y, Xiang W G. Chem. Eng. J., 2020, 387: 124101.
[62]
Wang J Z, Cao C S, Zhang Y, Zhang Y Q, Zhu L Y. Appl. Catal. B Environ., 2021, 286: 119911.
[63]
Yang Q, Cao J X, Ma Y, Zhou Y C, Jiang L M, Zhong X L. J. Appl. Phys., 2013, 113(18): 184110.
[64]
Aidhy D S, Rawat K. J. Appl. Phys., 2021, 129(17): 171102.
[65]
Deml A M, Stevanović V, Muhich C L, Musgrave C B, O'Hayre R. Energy Environ. Sci., 2014, 7(6): 1996.
[66]
Michalsky R, Botu V, Hargus C M, Peterson A A, Steinfeld A. Adv. Energy Mater., 2015, 5(7): 1401082.
[67]
Tang Y, Zhao S, Long B, Liu J C, Li J. J. Phys. Chem. C, 2016, 120(31): 17514.
[68]
Zhang B L, Zhang S Y, Zhang S G. Prog. Chem., 2022, 34(2): 301.
张柏林, 张生杨, 张深根. 化学进展. 2022, 34 (2): 301.).
[69]
Ma X L, Yang Y, Xu L M, Xiao H, Yao W Z, Li J. J. Mater. Chem. A, 2022, 10(11): 6146.
[70]
Liu M H, Chen Y W, Lin T S, Mou C Y. ACS Catal., 2018, 8(8): 6862.
[71]
Yin C C, Liu Y N, Xia Q N, Kang S F, Li X, Wang Y G, Cui L F. J. Colloid Interface Sci., 2019, 553: 427.
[72]
Yang J, Hu S Y, Fang Y R, Hoang S, Li L, Yang W W, Liang Z F, Wu J, Hu J P, Xiao W, Pan C Q, Luo Z, Ding J, Zhang L Z, Guo Y B. ACS Catal., 2019, 9(11): 9751.
[73]
Zha K W, Sun W J, Huang Z, Xu H L, Shen W. ACS Catal., 2020, 10(20): 12127.
[74]
Su Y, Ji K M, Xun J Y, Zhao L, Zhang K, Liu P. Prog. Chem., 2021, 33(9): 1560.
苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 化学进展. 2021, 33 (9): 1560.).
[75]
Ma X Y, Xiao M L, Yang X Q, Yu X L, Ge M F. J. Colloid Interface Sci., 2021, 594: 882.
[76]
Liu H, Jia W L, Yu X, Tang X, Zeng X H, Sun Y, Lei T Z, Fang H Y, Li T Y, Lin L. ACS Catal., 2021, 11(13): 7828.
[77]
Li L X, Cao R R, Zhang P Y. Prog. Chem., 2021, 33(7): 1188.
李连欣, 曹冉冉, 张彭义. 化学进展. 2021, 33 (7): 1188.).
[78]
Liu B, Li C M, Zhang G Q, Yao X S, Chuang S S C, Li Z. ACS Catal., 2018, 8(11): 10446.
[79]
Zhang W, Ma X L, Xiao H, Lei M, Li J. J. Phys. Chem. C, 2019, 123(18): 11763.
[80]
Huang Z Q, Li T H, Yang B L, Chang C R. Chin. J. Catal., 2020, 41(12): 1906.
[81]
Sun C Z, Kong Y, Shao L, Sun K N, Zhang N Q. J. Power Sources, 2020, 459: 228017.
[82]
Dong C L, Dong W J, Lin X Y, Zhao Y T, Li R Z, Huang F Q. EnergyChem, 2020, 2(6): 100045.
[83]
Liu L Z, Huang H W, Chen F, Yu H J, Tian N, Zhang Y H, Zhang T R. Sci. Bull., 2020, 65(11): 934.
[84]
DavÓ-Quiñonero A, BailÓn-García E, LÓpez-Rodríguez S, Juan-Juan J, Lozano-CastellÓ D, García-Melchor M, Herrera F C, Pellegrin E, Escudero C, Bueno-LÓpez A. ACS Catal., 2020, 10(11): 6532.
[85]
Liu Z J, Huang Y D, Cai Y J, Wang X C, Zhang Y, Guo Y, Ding J, Cheng W H. ACS Appl. Mater. Interfaces, 2021, 13(16): 18876.
[86]
Zhuang L Z, Ge L, Yang Y S, Li M R, Jia Y, Yao X D, Zhu Z H. Adv. Mater., 2017, 29(17): 1606793.
[87]
Ge R X, Li L, Su J W, Lin Y C, Tian Z Q, Chen L. Adv. Energy Mater., 2019, 9(35): 1901313.
[88]
Ma Y D, Zhang H, Xia J, Pan Z R, Wang X F, Zhu G X, Zheng B, Liu G X, Lang L M. Int. J. Hydrog. Energy, 2020, 45(19): 11052.
[89]
Li Y G, Wang Y, Lu J M, Yang B, San X Y, Wu Z S. Nano Energy, 2020, 78: 105185.
[90]
Wang P Y, Zhang L, Wang Z, Bu D C, Zhan K, Yan Y, Yang J H, Zhao B. J. Colloid Interface Sci., 2021, 597: 361.
[91]
Lv C D, Zhong L X, Yao Y, Liu D B, Kong Y, Jin X L, Fang Z W, Xu W J, Yan C S, Dinh K N, Shao M H, Song L, Chen G, Li S Z, Yan Q Y, Yu G H. Chem, 2020, 6(10): 2690.
[92]
Wen Y Y, Liu J H, Zhang F R, Li Z X, Wang P, Fang Z, He M, Chen J S, Song W Y, Si R, Wang L Z. Nano Res., 2022, https://doi.org/10.1007/s12274-022-5117-5.
[93]
Li M, Wang Y L, Wu X Y, Duan L, Zhang C M, He D N. Prog. Chem., 2017, 29(12): 1526.
李敏, 王艳丽, 吴晓燕, 段磊, 张春明, 何丹农. 化学进展. 2017, 29 (12): 1526.).
[94]
Gu Y J, Chen Y B, Liu H Q, Wang Y M, Sun J. Chin. J. Power Sources, 2013, 37(12): 2116.
谷亦杰, 陈蕴博, 刘洪权, 王延敏, 孙杰. 电源技术研究与设计. 2013, 37 (12): 2116.).
[95]
Shi R, Zhao Y X, Waterhouse G I N, Zhang S, Zhang T R. ACS Catal., 2019, 9(11): 9739.
[96]
Zhao Y F, Mao Q Y, Zhai X Y, Zhang G Y. Prog. Chem., 2021, 33(8): 1331.
赵依凡, 毛琦云, 翟晓雅, 张国英. 化学进展. 2021, 33 (8): 1331.).
[97]
Ren W J, Mei Z W, Zheng S S, Li S N, Zhu Y M, Zheng J X, Lin Y, Chen H B, Gu M, Pan F. Research, 2020, 2020: 3750314.
[98]
Cui D D, Wang L, Xu K, Ren L, Wang L, Yu Y X, Du Y, Hao W C. J. Mater. Chem. A, 2018, 6(5): 2193.
[99]
Bhatt V, Kumar M, Kim J, Chung H J, Yun J H. Ceram. Int., 2019, 45(7): 8561.
[100]
Mao Y S, Wang P F, Li L N, Chen Z W, Wang H T, Li Y, Zhan S H. Angew. Chem. Int. Ed., 2020, 59(9): 3685.
[101]
Li M M, Wang P F, Ji Z Z, Zhou Z R, Xia Y G, Li Y, Zhan S H. Appl. Catal. B Environ., 2021, 289: 120020.
[102]
Liu Y N, Miao C L, Yang P F, He Y F, Feng J T, Li D Q. Appl. Catal. B Environ., 2019, 244: 919.
[103]
Pan F P, Xiang X M, Du Z C, Sarnello E, Li T, Li Y. Appl. Catal. B Environ., 2020, 260: 118189.
[104]
Zhu J C, Shao W W, Li X D, Jiao X C, Zhu J F, Sun Y F, Xie Y. J. Am. Chem. Soc., 2021, 143(43): 18233.
[105]
Xiao M, Zhang L, Luo B, Lyu M Q, Wang Z L, Huang H M, Wang S C, Du A J, Wang L Z. Angew. Chem. Int. Ed., 2020, 59(18): 7230.
[106]
Mao C L, Cheng H G, Tian H, Li H, Xiao W J, Xu H, Zhao J C, Zhang L Z. Appl. Catal. B Environ., 2018, 228: 87.
[107]
Wang J G, Chen Z M, Zhai G J, Men Y. Appl. Surf. Sci., 2018, 462: 760.
[108]
Shang H, Wang X, Li H, Li M Q, Mao C L, Xing P, Zhao S X, Chen Z Y, Sun J, Ai Z H, Zhang L Z. Appl. Catal. B Environ., 2021, 290: 120024.
[109]
Qiu H, Ma X J, Sun C Y, Zhao B, Chen F. Appl. Surf. Sci., 2020, 506: 145021.
[110]
Ni J X, Wang W, Liu D M, Zhu Q, Jia J L, Tian J Y, Li Z Y, Wang X, Xing Z P. J. Hazard. Mater., 2021, 408: 124432.
[111]
Li T R, Liu Y L, Li M Y, Jiang J J, Gao J Y, Dong S S. Sep. Purif. Technol., 2021, 266: 118605.
[112]
Yang H, Xu B, Zhang Q T, Yuan S S, Zhang Z P, Liu Y T, Nan Z D, Zhang M, Ohno T. Appl. Catal. B Environ., 2021, 286: 119845.
[113]
Li Q, Li Y L, Li B, Hao Y J, Wang X J, Liu R H, Ling Y, Liu X Y, Li F T. Appl. Catal. B Environ., 2021, 289: 120041.
[114]
Badreldin A, Danyal Imam M, Wubulikasimu Y, Elsaid K, Abusrafa A E, Balbuena P B, Abdel-Wahab A. J. Alloys Compd., 2021, 871: 159615.
[115]
Zhao L Z, Wu H H, Yang C H, Zhang Q B, Zhong G M, Zheng Z M, Chen H X, Wang J M, He K, Wang B L, Zhu T, Zeng X C, Liu M L, Wang M S. ACS Nano, 2018, 12(12): 12597.
[116]
Park J Y, Kim S J, Chang J H, Seo H K, Lee J Y, Yuk J M. Nat. Commun., 2018, 9: 922.
[117]
Kaup K, Bishop K, Assoud A, Liu J, Nazar L F. J. Am. Chem. Soc., 2021, 143(18): 6952.
[118]
Ma W C, Xie S J, Liu T T, Fan Q Y, Ye J Y, Sun F F, Jiang Z, Zhang Q H, Cheng J, Wang Y. Nat. Catal., 2020, 3(6): 478.
[119]
Li F W, Thevenon A, Rosas-Hernández A, Wang Z Y, Li Y L, Gabardo C M, Ozden A, Dinh C T, Li J, Wang Y H, Edwards J P, Xu Y, McCallum C, Tao L Z, Liang Z Q, Luo M C, Wang X, Li H H, O’Brien C P, Tan C S, Nam D H, Quintero-Bermudez R, Zhuang T T, Li Y C, Han Z J, David Britt R, Sinton D, Agapie T, Peters J C, Sargent E H. Nature, 2020, 577(7791): 509.
[120]
Wang L X, Guan E J, Wang Y Q, Wang L, Gong Z M, Cui Y, Meng X J, Gates B C, Xiao F S. Nat. Commun., 2020, 11: 1033.
[121]
Zhong H X, Ghorbani-Asl M, Ly K H, Zhang J C, Ge J, Wang M C, Liao Z Q, Makarov D, Zschech E, Brunner E, Weidinger I M, Zhang J, Krasheninnikov A V, Kaskel S, Dong R H, Feng X L. Nat. Commun., 2020, 11: 1409.

Funding

Beijing Natural Science Foundation(2232019)
National Natural Science Foundation of China(21902182)
Open Project Program of Fujian Key Laboratory of Functional Marine Sensing Materials(MJUKF-FMSM202202)
Fundamental Research Funds for the Central Universities(2023ZKPYHH01)
Training Program of Innovation and Entrepreneurship for Undergraduates(202203038)
PDF(9130 KB)

Accesses

Citation

Detail

Sections
Recommended

/