Condensed Matter Chemistry in Catalytic Conversion of Small Molecules

Hai Wang, Chengtao Wang, Hang Zhou, Liang Wang, Fengshou Xiao

Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 861-885.

PDF(20228 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(20228 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 861-885. DOI: 10.7536/PC221133
Review

Condensed Matter Chemistry in Catalytic Conversion of Small Molecules

Author information +
History +

Abstract

Catalysis has played an important role in the modern chemical industry. The processes of oil refining, petrochemical industry, fine chemical industry, pharmaceutical industry, and environmental protection strongly rely on catalysts. The catalytic transformation of small molecules is a key technology that provides solutions for energy and environmental problems, which has become one of the most important and hot topics in the international community. In this article, we summarize the progress of condensed matter chemistry and focus on the catalytic conversion of small molecules. The dehydrogenation of alkanes, hydrogenation of organic small molecules, efficient hydrogen production, and syngas conversion are summarized and discussed. The changes in the chemical properties of the condensed state caused by the metal-support interactions have been emphasized. We hope this review is helpful for the study of the structure-performance relationship between the multi-level structure of condensed matter and their catalytic properties, guiding the design of efficient catalysts in the future.

Contents

1 Introduction

2 Catalytic dehydrogenations of propane with different condensed matter structures

2.1 PtSn-based catalysts

2.2 PtZn-based catalysts

2.3 Pt-rare earth-based catalysts

2.4 Other dehydrogenation catalysts

3 Selective hydrogenations of organic molecules catalyzed by condensed matter with multi-level structure

3.1 Selective hydrogenation of nitro compounds

3.2 Reductive amination of oxygenated organic molecules

4 Hydrogen production catalyzed by condensed matter with multi-level structures

4.1 Methanol steam reforming

4.2 Water-gas shift reaction

5 Carbon monoxide oxidation catalyzed by condensed matter with multi-level structures

5.1 Gold nanoparticle catalyst for low temperature CO oxidation

5.2 Improved sinter-resistance of metal nanoparticles via condensed matter structure

5.3 Pt nanoparticle catalyst for low temperature CO oxidation

6 Syngas conversion on condensed matter structure

6.1 Identification of the active site in Rh-based catalyst

6.2 Catalysts composition

6.3 Morphologies of Rh species

6.4 Effect of additives

6.5 Effect of supports

6.6 Effect of synthetic methods

6.7 Encapsulated Rh catalysts

7 Conclusion and outlook

Key words

small molecule / heterogeneous catalysis / structure-performance relationship / multi-level structure / condensed matter chemistry

Cite this article

Download Citations
Hai Wang , Chengtao Wang , Hang Zhou , et al . Condensed Matter Chemistry in Catalytic Conversion of Small Molecules[J]. Progress in Chemistry. 2023, 35(6): 861-885 https://doi.org/10.7536/PC221133

References

[1]
Harris P J F. Int. Mater. Rev., 1995, 40: 97.
[2]
Satoh N, Nakashima T, Yamamoto K. Sci. Rep., 2013, 3: 1959.
[3]
Guo J, Huo J, Liu Y, Wu W, Wang Y, Wu M, Liu H, Wang G. Small Methods, 2019, 3: 1900159.
[4]
Chen S, Chang X, Sun G, Zhang T, Xu Y, Wang Y, Pei C, Gong J. Chem. Soc. Rev., 2021, 50: 3315.
[5]
Cybulskis V, Bukowski B C, Tseng H T, Gallagher J R, Wu Z, Wegener E, Kropf A J, Ravel B, Ribeiro F H, Greeley J, Miller J. ACS Catal., 2017, 7: 4173.
[6]
Sattler J J H B, Martinez J R, Eduardo S J, Weckhuysen B M. Chem. Rev., 2014, 114: 10613.
[7]
Virnovskaia A, Morandi S, Rytter E, Giovanna G, Olsbye U. J. Phys. Chem. C., 2007, 111: 14732.
[8]
Nagaraja B M, Shin C H, Jung K D. Appl. Catal. A., 2013, 467: 211.
[9]
Wu J, Peng Z M, Bell A T. J. Catal., 2014, 311: 161.
[10]
Mizuhata M, Yasuda K, Oguro K, Takenaka H. J. Catal., 1966, 6: 92.
[11]
Cortright R D, Dumesic J A. J. Catal., 1995, 157: 576.
[12]
Natal-Santiago M A, Podkolzin S G, Cortright R D, Dumesic J A. Catal. Lett., 1997, 45: 155.
[13]
Shen J, Hill J M, Watwe R M, Spiewak B E, Dumesic J A. J. Phys. Chem. B, 1999, 103: 3923.
[14]
Yang M, Zhu Y, Zhou X, Sui Z, Chen D. ACS Catal., 2012, 2: 1247.
[15]
Nykanen L, Honkala K. J. Phys. Chem. C., 2011, 115: 9578.
[16]
Gao J, Zhao H, Yang X, Koel B E. Angew. Chem. Int. Ed., 2014, 53: 3641.
[17]
Motagamwala A H, Almallahi R, Wortman J, Igenegbai V O, Linic S. Science, 2021, 373: 217.
[18]
Liu L, Lopez-Haro M, Lopes C W, Rojas-Buzo S, Concepcion P, Manzorro R, Simonelli L, Sattler A, Serna P, Calvino J J, Corma A. Nat. Catal., 2020, 3: 628.
[19]
Silvestre-Albero J, Serrano-Ruiz J C, Sepulveda-Escribano A, Rodriguez-Reinoso F. Appl. Catal. A, 2005, 292: 244.
[20]
Silvestre-Albero J, Serrano-Ruiz J C, Sepulveda-Escribano A, Rodriguez-Reinoso F. Appl. Catal. A, 2008, 351: 16.
[21]
Vu B K, Song M B, Ahn I Y, Suh Y W, Suh D J, Kim W I, Koh H L, Choi Y G, Shin E W. Appl. Catal. A, 2011, 400: 25.
[22]
Sun Q, Wang N, Fan Q, Zeng L, Mayoral A, Miao S, Yang R, Jiang Z, Zhou W, Zhang J, Zhang T, Xu J, Zhang P, Cheng J, Yang D, Jia R, Li L, Zhang Q, Wang Y, Terasaki O, Yu J. Angew. Chem. Int. Ed., 2020, 59: 19450.
[23]
Chen S, Zhao, Z, Mu R, Chang X, Luo J, Purdy S C, Kropf A J, Sun G, Pei C, Miller J T, Zhou X, Vovk E, Yang Y, Gong J. Chem, 2021, 7: 387.
[24]
Qi L, Babucci M, Zhang Y F, Lund A, Liu L M, Li J W, Chen Y Z, Hoffman A S, Bare S R, Han Y, Gates B C, Bell A T. J. Am. Chem. Soc., 2021, 143: 21364.
[25]
Ryoo R, Kim J, Jo C, Han S W, Kim J C, Park H, Han J, Shin H S, Shin J W. Nature, 2020, 585: 221.
[26]
Zhao D, Tian X N, Doronkin D E, Han S L, Kondratenko V A, Grunwaldt J D, Perechodjuk A, Vuong T H, Rabeah J, Eckelt R, Rodemerck U, Linke D, Jiang G Y, Jiao H J, Kondratenko E V. Nature, 2021, 599: 234.
[27]
Yang Z, Li H, Zhou H, Wang L, Wang L, Zhu Q, Xiao J, Meng X, Chen J, Xiao F S. J. Am. Chem. Soc., 2020, 142: 16429.
[28]
Muller T E, Hultzsch K C, Yus M, Foubelo F, Tada M. Chem. Rev., 2008, 108: 3795.
[29]
Hartwig J F. Nature, 2008, 455: 314.
[30]
Formenti D, Ferretti F, Scharnagl F K, Beller M. Chem. Rev., 2018, 119: 2611.
[31]
Zhang S, Chang C, Huang Z, Li J, Wu Z, Ma Y, Zhang Z, Wang Y, Qu Y. J. Am. Chem. Soc., 2016, 138: 2629.
[32]
Tauster S J, Fung S C, Garten R L. J. Am. Chem. Soc., 1978, 100: 170.
[33]
Dong J, Fu Q, Jiang Z, Mei B, Bao X. J. Am. Chem. Soc., 2018, 140: 13808.
[34]
Zhang Y, Liu J X, Qian K, Jia A, Li D, Shi L, Hu J, Zhu J, Huang W. Angew. Chem. Int. Ed., 2021, 60: 12074.
[35]
Coq B, Tijani A, Dutartre R, Figueras F. J. Mol. Catal., 1993, 79: 253.
[36]
Corma A, Serna P, Concepcion P, Calvino J J. J. Am. Chem. Soc., 2008, 130: 8748.
[37]
Macino M, Barnes A J, Althahban S M, Qu R Y, Gibson E K, Morgan D J, Freakley S J, Dimitratos N, Kiely C J, Gao X, Beale A M, Bethell D, He Q, Sankar M, Hutchings G J. Nat. Catal., 2019, 2: 873.
[38]
Liu X, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H, Chen J M, Lee J F, Lin T S. J. Am. Chem. Soc., 2012, 134: 10251.
[39]
Cardenas-Lizana F, Hao Y F, Crespo-Quesada M, Yuranov I, Wang X D, Keane M A, Kiwi-Minsker L. ACS Catal., 2013, 3: 1386.
[40]
Wang G, Hilgert J, Richter F H, Wang F, Bongard H J, Spliethoff B, Weidenthaler C, Schuth F. Nat. Mater., 2014, 13: 293.
[41]
Murugesan K, Chandrashekhar V G, Kreyenschulte C, Beller M, Jagadeesh R V. Angew. Chem. Int. Ed., 2020, 59: 17408.
[42]
Guan Q, Zhu C, Lin Y, Vovk E I, Zhou X, Yang Y, Yu H, Cao L, Wang, H, Zhang X, Liu X, Zhang M, Wei S, Li W, Lu J. Nat. Catal., 2021, 4: 840.
[43]
Liu L, Gao F, Concepcion P, Corma A. J. Catal., 2017, 350: 218.
[44]
Ge H, Zhang B, Gu X, Liang H, Yang H, Gao Z, Wang J, Qin Y. Angew. Chem. Int. Ed., 2016, 55: 7081.
[45]
Zhang J, Wang L, Shao Y, Wang Y Q, Gates B C, Xiao F S. Angew. Chem. Int. Ed., 2017, 56: 9747.
[46]
Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T. Nat. Commun., 2014, 5: 5634.
[47]
Wang L, Zhu C, Xu M, Zhao C, Gu J, Cao L, Zhang X, Sun Z, Wei S, Zhou W, Li W X, Lu J. J. Am. Chem. Soc., 2021, 143: 18854.
[48]
Jin H, Li P, Cui P, Shi J, Zhou W, Yu X, Song W, Cao C Y. Nat. Commun., 2022, 13: 723.
[49]
Murugesan K, Beller M, Jagadeesh R V. Angew. Chem. Int. Ed., 2019, 131: 5118.
[50]
Tong T, Guo W, Liu X, Guo Y, Pao C, Chen J, Hu Y, Wang Y. J. Catal., 2019, 378: 392.
[51]
Komanoya T, Kinemura T, Kita Y, Kamata K, Hara M. J. Am. Chem. Soc., 2017, 139: 11493.
[52]
Jagadeesh R V, Murugesan K, Alshammari A S, Neumann H, Pohl M M, Radnik J, Beller M. Science, 2017, 358: 326.
[53]
Hahn G, Kunnas P, De-Jonge N, Kempe R. Nat. Catal., 2019, 2: 71.
[54]
Ho C R, Defalque V, Zheng S, Bell A T. ACS Catal., 2019, 9: 2931.
[55]
Wang T, Ibanez J, Wang K, Fang L, Sabbe M, Michel C, Paul S, Pera-Titus M, Sautet P. Nat. Catal., 2019, 2: 773.
[56]
Shimizu K, Kon K, Onodera W, Yamazaki H, Kondo J N. ACS Catal., 2013, 3: 112.
[57]
Schultz M G, Diehl T, Brasseur G P, Zittel W. Science, 2003, 302: 624.
[58]
Zou X, Zhang Y. Chem. Soc. Rev., 2015, 44: 5148.
[59]
Chen L, Hou K, Liu Y, Qi Z, Zheng Q, Lu Y, Chen J, Chen J, Pao C, Wang S, Li Y, Xie S, Liu F, Prendergast D, Klebanoff L E, Stavila V, Allendorf M D, Guo J, Zheng L, Su J, Somorjai G A. J. Am. Chem. Soc., 2019, 141: 17995.
[60]
Palo D R, Dagle R A, Holladay J D. Chem. Rev., 2007, 107: 3992.
[61]
Lin L, Yao S, Gao R, Liang X, Yu Q, Deng Y, Liu J, Peng M, Jiang Z, Li S, Li Y, Wen X, Zhou W, Ma D. Nat. Nanotechnol., 2019, 14: 354.
[62]
Nilekar A U, Sasaki K, Farberow C A, Adzic R R, Mavrikakis M. J. Am. Chem. Soc., 2011, 133: 18574.
[63]
Cortright R D, Davda R R, Dumesic J A. Nature, 2002, 418: 964.
[64]
Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li Y, Shi C, Wen X, Ma D. Nature, 2017, 544: 80.
[65]
Patel S, Pant K K. Appl. Catal. A, 2009, 356: 189.
[66]
Li D, Xu F, Tang X, Dai S, Pu T, Liu X, Tian P, Xuan F, Xu Z, Wachs I E, Zhu M. Nat. Catal., 2022, 5: 99.
[67]
Yu K M K, Tong W Y, West A, Cheung K, Li T, Smith G, Guo Y L, Tsang S C E. Nat. Commun., 2012, 3: 1230.
[68]
Chen L, Qi Z, Peng X, Chen J, Pao C, Zhang X, Dun C, Young M, Prendergast D, Urban J J, Guo J H, Somorjai G A, Su J. J. Am. Chem. Soc., 2021, 143: 12074.
[69]
Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Perez M. Science, 2007, 318: 1757.
[70]
Gokhale A A, Dumesic J A, Mavrikakis M. J. Am. Chem. Soc., 2008, 130: 1402.
[71]
Rodriguez J, Liu P, Hrbek J, Evans J, Perez M. Angew. Chem. Int. Ed., 2007, 46: 1329.
[72]
Liang J, Lin J, Liu J, Wang X, Zhang T, Li J. Angew. Chem. Int. Ed., 2020, 59: 12868.
[73]
Xu M, Yao S, Rao D, Niu Y, Liu N, Peng M, Zhai P, Man Y, Zheng L, Wang B, Zhang B, Ma D, Wei M. J. Am. Chem. Soc., 2018, 140: 11241.
[74]
Yang M, Li S, Wang Y, Herron J A, Xu Y, Allard L F, Lee S, Huang J, Mavrikakis M, Flytzani-Stephanopoulos M. Science, 2016, 346: 1498.
[75]
Yao S, Zhang X, Zhou W, Gao R, Xu W, Ye Y, Lin L, Wen X, Liu P, Chen B, Crumlin E, Guo J, Zuo Z, Li W Z, Xie J L, Lu L, Kiely C J, Gu L, Shi C, Rodriguez J A, Ma D. Science, 2017, 357: 389.
[76]
Zhang X, Zhang M T, Deng Y C, Xu M Q, Artiglia L, Wen W, Gao R, Chen B, Yao S, Zhang X, Peng M, Yan J, Li A, Jiang Z, Gao X, Cao S, Yang C, Kropf A J, Shi J, Xie J, Bi M, van Bokhoven J A, Li Y, Wen X, Flytzani-Stephanopoulos M, Shi C, Zhou W, Ma D. Nature, 2021, 589: 396.
[77]
Freund H J, Meijer G, Scheffler M, Schlogl R, Wolf M. Angew. Chem. Int. Ed., 2011, 50: 10064.
[78]
Twigg M V. Appl. Catal. B, 2007, 70: 2.
[79]
Liu K, Wang A, Zhang T. ACS Catal., 2012, 2: 1165.
[80]
Haruta M, Yamada N, Kobayashi T, Iijima S. J. Catal., 1989, 115: 301.
[81]
Haruta M, Kobayashi T, Sano H, Yamada N. Chem. Lett., 1987, 16: 405.
[82]
Comotti M, Li W, Spliethoff B, Schüth F. J. Am. Chem. Soc., 2006, 128: 917.
[83]
Arab L, Boutahala M, Djellouli B, Dintzer T, Pitchon V. Appl. Catal. A, 2014, 475: 446.
[84]
Lizuka Y, Tode T, Takao T, Yatsu K, Takeuchi T, Tsubota S, Haruta M. J. Catal., 1999, 187: 50.
[85]
Mavrikakis M, Stoltze P, Nørskov J K. Catal. Lett., 2000, 64: 101.
[86]
Lopez N. Janssens T V W, Clausen B S, Xu Y, Mavrikakis M, Bligaard T, Nørskov J K. J. Catal., 2004, 223: 232.
[87]
Saavedra J. Doan H A, Pursell C J, Grabow L C, Chandler B D. Science, 2014, 345: 1599.
[88]
Green I X, Tang W, Neurock M, Yates J T. Science, 2011, 333: 736.
[89]
Yoon B, Ha¨kkinen H, Landman U, Wörz A S, Antonietti J M, Abbet S, Judai K, Heiz U. Science, 2005, 307: 403.
[90]
Wang S, Zhao Q, Wei H, Wang J Q, Cho M, Cho H S, Terasaki O, Wan Y. J. Am. Chem. Soc., 2013, 135: 11849.
[91]
Xiao J, Pan X, Guo S, Ren P, Bao X H. J. Am. Chem. Soc., 2015, 137: 477.
[92]
Tauster S J. Acc. Chem. Res., 1987, 20: 389.
[93]
Van Deelen T M, Mejía C H, De Jong K P. Nat. Catal., 2019, 2: 955.
[94]
Tang H, Su Y, Zhang B, Lee A F, Isaacs M A, Wilson K, Li L, Ren Y, Huang J, Haruta M, Qiao B, Liu X, Jin C, Su D S, Wang J H, Zhang T. Sci. Adv., 2017, 3: e1700231.
[95]
Liu S, Xu W, Niu Y, Zhang B, Zheng L, Liu W, Li L, Wang J H. Nat. Commun., 2019, 10: 5790.
[96]
Wang Y, Widmann D, Heenemann M, Diemant T, Biskupek J, Schlögl R, Behm R J. J. Catal., 2017, 354: 46.
[97]
Zhang J, Wang H, Wang L, Ali S, Wang C, Wang L, Meng X, Li B, Su D S, Xiao F S. J. Am. Chem. Soc., 2019, 141: 2975.
[98]
Tauster S J, Fung S C, Baker R T K, Horsley J A. Science, 1981, 211: 1121.
[99]
Matsubu J C, Zhang S, De Rita L, Marinkovic N S, Chen J G G, Graham G W, Pan X, Christopher P. Nat. Chem., 2017, 9: 120.
[100]
Wang H, Wang L, Lin D, Feng X, Niu Y, Zhang B, Xiao F S. Nat. Catal., 2021, 4: 418.
[101]
Wang H, Wang L, Xiao F S. Sci. China Chem., 2022, 65: 2051.
[102]
Dong J, Fu Q, Li H, Xiao J, Yang B, Zhang B, Bai Y, Song T, Zhang R, Gao L, Cai J, Zhang H, Liu Z, Bao X. J. Am. Chem. Soc., 2020, 142: 17167.
[103]
Chen H, Yang Z, Wang X, Polo-Garzon F, Halstenberg P W, Wang T, Sun X, Yang S Z, Meyer H M, Wu Z, Dai S. J. Am. Chem. Soc., 2021, 143: 8521.
[104]
Yu J, Sun X, Tong X, Zhang J, Li J, Li S, Liu Y, Tsubaki N, Abe T, Sun J. Nat. Commun., 2021, 12: 7209.
[105]
Zhang J, Zhu D, Yan J, Wang C A. Nat. Commun., 2021, 12: 6665.
[106]
Fu Q, Li W X, Yao Y, Liu H, Su H Y, Ma, Gu X K, Chen L, Wang Z, Zhang H, Wang B, Bao X H. Science, 2010, 328: 1141.
[107]
Cao L, Liu W, Luo Q, Yin R, Wang B, Weissenrieder J, Soldemo M, Yan H, Lin Y, Sun Z, Ma C, Zhang W, Chen S, Wang H, Guan Q, Yao T, Wei S, Yang J, Lu J L. Nature, 2019, 565: 631.
[108]
Chen G, Zhao Y, Fu G, Duchesne P N, Gu L, Zheng Y, Weng X, Chen M, Zhang P, Pao C W, Lee J F, Zheng N F. Science, 2014, 344: 495.
[109]
Nie L, Mei D H, Xiong H, Peng B, Ren Z, Hernandez X I P. De La Riva A, Wang M, Engelhard M H, Kovarik L, Datye A K, Wang Y. Science, 2017, 358: 1419.
[110]
Watson P R, Somorgai G A. J. Catal., 1981, 72: 347.
[111]
Watson P R, Somorgai G A. J. Catal., 1982, 74: 282.
[112]
Katzer J R, Sleight A W, Gajardo P, Michel J B, Gleason E F, McMillan S. Faraday Discuss., 1981, 72: 121.
[113]
Favre T L F, Vanderlee G, Ponec V. J. Chem. Soc. Chem. Commun., 1985, 4: 230.
[114]
Vanderlee G, Schuller B, Post H, Favre T L F, Ponec V. J. Catal., 1986, 98: 522.
[115]
Chuang S S C, Stevens R W, Khatri R. Top. Catal., 2005, 32: 225.
[116]
Chuang S S C, Pien S I. J. Catal., 1992, 135: 618.
[117]
Castner D G, Sexton B A, Somorjai G A. Surf. Sci., 1978, 71: 519.
[118]
Thiel P A, Williams E D, Yates J T, Weinberg W H. Surf. Sci., 1979, 84: 54.
[119]
Yates J T, Williams E D, Weinberg W H. Surf. Sci., 1980, 91: 562.
[120]
Gorodetskii V V, Nieuwenhuys B E. Surf. Sci., 1981, 105: 299.
[121]
Bowker M, Guo Q M, Joyner R. Surf. Sci., 1991, 253: 33.
[122]
Batteas J D, Gardin D E, Van Hove M A, Somorjai G A. Surf. Sci., 1993, 297: 11.
[123]
Sexton B A, Somorjai G A. J. Catal., 1977, 46: 167.
[124]
Castner D G, Somorjai G A. Surf. Sci., 1979, 83: 60.
[125]
Liu W, Ren D M. Surf. Sci., 1990, 232: 323.
[126]
Kim M J, Chae H J, Ha K S, Jeong K E, Kim C U, Jeong S Y, Kim T W. J. Nanosci. Nanotechnol., 2013, 13: 7511.
[127]
Mei D, Rousseau R, Kathmann S M, Glezakou V A, Engelhard M H, Jiang W, Wang C, Gerber M A, White J F, Stevens D J. J. Catal., 2010, 271: 325.
[128]
Ma X, Deng H, Yang M M, Li W X. J. Chem. Phys., 2008, 129: 244711.
[129]
Liu J, Guo Z, Childers D, Schweitzer N, Marshall C L, Klie R F, Miller J T, Meyer R J. J. Catal., 2014, 313: 149.
[130]
Jackson S D, Brandreth B J, Winstanley D A. J. Catal., 1987, 106: 464.
[131]
Bhasin M. J. Catal., 1978, 54: 120.
[132]
Liu W, Wang S, Sun T, Wang S. Catal. Lett., 2015, 145: 1741.
[133]
Mo X, Gao J, Jmnajkaseam N, GoodwinJ G. J. Catal., 2009, 267: 167.
[134]
Nonneman L E Y, Bastein A G T M, Ponec V, Burch R. Appl. Catal., 1990, 62: L23.
[135]
Burch R, Petch M I. Appl. Catal. A, 1992, 88: 61.
[136]
Choi Y, Liu P. J. Am. Chem. Soc., 2009, 131: 13054.
[137]
Chuang S C, Goodwin J G, Wender I. J. Catal., 1985, 95: 435.
[138]
Egbebi A, Schwartz V, Overbury S H, Spivey J J. Catal. Today, 2010, 149: 91.
[139]
Du Y H, Chen D A, Tsai K R. Appl. Catal., 1987, 35: 77.
[140]
Jiang D, Ding Y, Pan Z, Chen W, Luo H. Catal. Lett., 2008, 121: 241.
[141]
Yu J, Mao D, Han L, Guo Q, Lu G. Fuel Process. Technol., 2013, 106: 344.
[142]
Yu J, Mao D, Han L, Guo Q, Lu G. J. Mol. Catal. A Chem., 2013, 367: 38.
[143]
Han L, Mao D, Yu J, Guo Q, Lu G. Catal. Commun., 2012, 23: 20.
[144]
Han L, Mao D, Yu J, Guo Q, Lu G. Appl. Catal. A, 2013, 454: 81.
[145]
Chai S H, Howe J Y, Wang X Q, Kidder M, Schwartz V, Golden M L, Overbury S H, Dai S, Jiang D. Carbon, 2012, 50: 1574.
[146]
Arakawa H, Takeuchi K, Matsuzaki T, Sugi Y. Chem. Lett., 1984, 1607.
[147]
Fan Z, Chen W, Pan X, Bao X. Catal. Today, 2009, 147: 86.
[148]
Ichikawa M, Shikakura K, Kawai M.Proceedings of Symposium, Dalian, China, 1982.
[149]
Tauster S J, Fung S C. J. Catal., 1978, 55: 29.
[150]
Kip B J, Smeets P A T, Van Grondelle J, Prins R. Appl. Catal., 1987, 33: 181.
[151]
Subramanian N D, Gao J, Mo X H, Goodwin J G, Torres W, Spivey J J. J. Catal., 2010, 272: 204.
[152]
Liu J, Tao R, Guo Z, Regalbuto J R, Marshall C L, Klie R F, Miller J T, Meyer R J. ChemCatChem, 2013, 5: 3665.
[153]
Wang J, Zhang Q, Wang Y. Catal. Today, 2011, 171: 257.
[154]
Yang N, Yoo J S, Schumann J, Bothra P, Singh J A, Valle E, Abild-Pedersen F, Nørskov J K, Bent S F. ACS Catal., 2017, 7: 5746.
[155]
Huang Y, Deng W, Guo E, Chung P W, Chen S, Trewyn B G, Brown R C, Lin V S Y. ChemCatChem., 2012, 4: 674.
[156]
Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Nat. Mater., 2007, 6: 507.
[157]
Wang C, Zhang J, Qin G, Wang L, Zuidema E, Yang Q, Dang S, Yang C, Xiao J, Meng X, Mesters C, Xiao F S. Chem, 2020, 6: 646.
PDF(20228 KB)

Accesses

Citation

Detail

Sections
Recommended

/