Peracetic Acid-Based Advanced Oxidation Processes and Its Applications in Water Disinfection

Yining Li, Minghao Sui

Prog Chem ›› 2023, Vol. 35 ›› Issue (8) : 1258-1265.

PDF(3290 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(3290 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (8) : 1258-1265. DOI: 10.7536/PC221214
Review

Peracetic Acid-Based Advanced Oxidation Processes and Its Applications in Water Disinfection

Author information +
History +

Abstract

Recent research has revealed that PAA-based advanced oxidation processes (AOP) can simultaneously destroy developing micropollutants in water while having a greater disinfection efficacy than PAA alone. This paper summarizes the activation mechanism of PAA-based AOP and its use in water disinfection. According to recent study, UV/PAA has a good treatment effect in the cutting-edge problems of water disinfection, such as the removal of algae and algal toxins, the inactivation of fungus and antibiotic-resistant bacteria, etc. It is awaiting more investigation. There are few AOPs in the realm of water disinfection that activate PAA in other ways, but they have significant research promise. Identification of potential disinfection by-products found in AOP of PAA may also become a focus of future research.

Contents

1 Introduction

2 Peracetic acid-based advanced oxidation processes and activation mechanism

2.1 Radiation activation

2.2 Metal catalysts activation

2.3 Activated carbon catalysts activation

3 Recent advances of peracetic acid-based advanced oxidation processes in water disinfection

3.1 Recent advances of bacterial inactivation

3.2 Recent advances of fungus and algae inactivation

3.3 Recent advances of virus inactivation

3.4 Recent advances of DBPs

4 Conclusion and outlook

Key words

peracetic acid / advanced oxidation processes / activation mechanism / water disinfection

Cite this article

Download Citations
Yining Li , Minghao Sui. Peracetic Acid-Based Advanced Oxidation Processes and Its Applications in Water Disinfection[J]. Progress in Chemistry. 2023, 35(8): 1258-1265 https://doi.org/10.7536/PC221214

References

[1]
Chen Y X, Cheng M, Lai C, Wei Z, Zhang G X, Li L, Tang C S, Du L, Wang G F, Liu H D. Small, 2023, 19(14): 2205902.
[2]
Xiao W, Cheng M, Liu Y, Wang J, Zhang G, Wei Z, Li L, Du L, Wang G, Liu H. ACS Catalysis, 2023, 13: 3.
[3]
Fu W H, Yi J, Cheng M, Liu Y, Zhang G X, Li L, Du L, Li B, Wang G F, Yang X F. J. Hazard. Mater., 2022, 424: 127419.
[4]
Shi Q K, Deng S, Zheng Y L, Du Y L, Li L, Yang S Z, Zhang G X, Du L, Wang G F, Cheng M, Liu Y. Environ. Res., 2022, 212: 113340.
[5]
Mezzanotte V, Antonelli M, Citterio S, Nurizzo C. Water Environ. Res., 2007, 79(12): 2373.
[6]
Wang C H, Fang R S. Chinese Journal of Disinfection, 2006, (2): 100.
(王传虎, 方荣生. 中国消毒学杂志, 2006, (2) 100.).
[7]
Luukkonen T, Heyninck T, Rämö J, Lassi U. Water Res., 2015, 85: 275.
[8]
Tian Q L. Journal of Hubei University of Medicine, 1991, (1): 59.
( 田秋霖. 湖北医学院学报, 1991, (1): 59.).
[9]
Ao X W, Eloranta J, Huang C H, Santoro D, Sun W J, Lu Z D, Li C. Water Res., 2021, 188: 116479.
[10]
Stampi S, De Luca G, Onorato M, Ambrogiani E, Zanetti F. J. Appl. Microbiol., 2002, 93(5): 725.
[11]
Luukkonen T, Teeriniemi J, Prokkola H, Rämö J, Lassi U. Water SA, 2014, 40(1): 73.
[12]
Shah N S, He X X, Khan H M, Ali Khan J, O'Shea K E, Boccelli D L, Dionysiou D D. J. Hazard. Mater., 2013, 263: 584.
[13]
Matta R, Tlili S, Chiron S, Barbati S. Environ. Chem. Lett., 2011, 9(3): 347.
[14]
Shi C C. Li Y, Wang J, Guo S, Barry Y, Zhang N. Marmier Water, 2022. 14, DOI: 10.3390/w14152309.
[15]
Correa-Sanchez S, Peñuela G A. J. Water Process. Eng., 2022, 49: 102986.
[16]
Kiejza D, Kotowska U, Polińska W, Karpińska J. Sci. Total Environ., 2021, 790: 148195.
[17]
Wang J W Y, Wan J Q, Ding Z P, Wang J, Ma P C, Xie M, Wiesner R. Environmental Science Technology, 2020, 54: 22.
[18]
Luukkonen T, Pehkonen S O. Crit. Rev. Environ. Sci. Technol., 2017, 47(1): 1.
[19]
Zoschke K, Börnick H, Worch E. Water Res., 2014, 52: 131.
[20]
Bai M D, Tian Y P, Yu Y X, Zheng Q L, Zhang X F, Zheng W, Zhang Z T. Chemosphere, 2018, 208: 541.
[21]
Yan T T, Ping Q, Zhang A, Wang L, Dou Y C, Li Y M. Chemosphere, 2021, 274: 129726.
[22]
Chateauneuf J, Lusztyk J, Ingold K U. J. Am. Chem. Soc., 1988, 110(9): 2877.
[23]
Zhang T Q, Huang C H. Environ. Sci. Technol., 2020, 54(12): 7579.
[24]
Deng J, Liu S, Fu Y, Liu Y. Environmental Technology, 2022, 201, 117291.
[25]
Rokhina E V, Makarova K, Lahtinen M, Golovina E A, Van As H, Virkutyte J. Chem. Eng. J., 2013, 221: 476.
[26]
Zhu T T, Liu B. Water Res., 2022, 220: 118705.
[27]
Wang J, Wang Z, Cheng Y, Cao L, Bai F, Yue S, Xie P, Ma J. Water Research, 2021, 201: 117291.
[28]
Kim J, Zhang T Q, Liu W, Du P H, Dobson J T, Huang C H. Environ. Sci. Technol., 2019, 53(22): 13312.
[29]
Dias Carlos T, Bezerra L B, Vieira M M, Almeida Sarmento R, Pereira D H, Cavallini G S. J. Hazard. Mater., 2021, 403: 123949.
[30]
Wang J W, Wang Z P, Cheng Y J, Cao L S, Xie P C, Ma J. Sep. Purif. Technol., 2022, 281: 119854.
[31]
Zhang P Y, Zhang X F, Zhao X D, Jing G H, Zhou Z M. J. Hazard. Mater., 2022, 424: 127653.
[32]
He M F, Li W Q, Xie Z H, Yang S R, He C S, Xiong Z K, Du Y, Liu Y, Jiang F, Mu Y, Lai B. Water Research, 2022, 222, 118887.
[33]
Wen G, Wang S J, Ma J, Huang T L, Liu Z Q, Zhao L, Xu J L. J. Hazard. Mater., 2014, 275: 193.
[34]
Zhang L L, Chen J B, Zhang Y L, Xu Y, Zheng T L, Zhou X F. Water Res., 2022, 216: 118322.
[35]
Li Y F, Li K, Wan Q Q, Xu X Q, Cao R H, Wang J Y, Huang T L, Wen G. J. Hazard. Mater., 2022, 439: 129611.
[36]
Zhang L, Fu Y S, Wang Z R, Zhou G F, Zhou R Y, Liu Y Q. Sep. Purif. Technol., 2021, 276: 119319.
[37]
Wang Z R, Fu Y S, Peng Y L, Wang S X, Liu Y Q. Sep. Purif. Technol., 2021, 277: 119434.
[38]
Wang Z P, Wang J W, Xiong B, Bai F, Wang S L, Wan Y, Zhang L, Xie P C, Wiesner M R. Environ. Sci. Technol., 2020, 54(1): 464.
[39]
Kim J, Du P H, Liu W, Luo C, Zhao H, Huang C H. Environ. Sci. Technol., 2020, 54(8): 5268.
[40]
Wu W, Tian D, Liu T C, Chen J B, Huang T Y, Zhou X F, Zhang Y L. Chem. Eng. J., 2020, 394: 124938.
[41]
Wang J W, Xiong B, Miao L, Wang S L, Xie P C, Wang Z P, Ma J. Appl. Catal. B Environ., 2021, 280: 119422.
[42]
Rothbart S, Ember EE, R. van Eldik. New Journal of Chemistry, 2012, 36(3): 732.
[43]
Zhou R Y, Zhou G F, Liu Y Q, Liu S L, Wang S X, Fu Y S. Chemosphere, 2022, 306: 135506.
[44]
Li R B, Manoli K, Kim J, Feng M B, Huang C H, Sharma V K. Environ. Sci. Technol., 2021, 55(13): 9150.
[45]
de Velásquez M T O, Yáñez-noguez I, JimÉnez-cisneros B, Luna Pabello V M. Environ. Technol., 2008, 29(11): 1209.
[46]
Zhou F Y, Lu C, Yao Y Y, Sun L J, Gong F, Li D W, Pei K M, Lu W Y, Chen W X. Chem. Eng. J., 2015, 281: 953.
[47]
Zhang T Q, Wang T, Mejia-Tickner B, Kissel J, Xie X, Huang C H. Environ. Sci. Technol., 2020, 54(15): 9652.
[48]
Drosou C, Coz A, Xekoukoulotakis N P, Moya A, Vergara Y, Mantzavinos D. J. Chem. Technol. Biotechnol., 2010, 85(8): 1049.
[49]
Ghordouei Milan E, Mahvi A H, Nabizadeh R, Alimohammadi M. Environ. Evid., 2022, 11(1): 1.
[50]
Ping Q, Yan T T, Wang L, Li Y M, Lin Y Q. Water Res., 2022, 210: 118019.
[51]
Zhang X F, Ma Y X, Tang T T, Xiong Y M, Dai R H. Sci. Total Environ., 2020, 720: 137653.
[52]
Almuhtaram H, Hofmann R. J. Hazard. Mater., 2022, 424: 127357.
[53]
Zhao H X, Zhang T Y, Wang H, Hu C Y, Tang Y L, Xu B. Sci. Total Environ., 2022, 853: 158626.
[54]
Cao L, Wang J, Wang Z, Yu S, Cheng Y, Ma J, Xie P. Water Research, 2022, 208(1): 117847.
[55]
Xu X Q, Zuo J, Wan Q Q, Cao R H, Xu H N, Li K, Huang T L, Wen G, Ma J. J. Hazard. Mater., 2022, 430: 128515.
[56]
Koivunen J, Heinonen-Tanski H. Water Res., 2005, 39(18): 4445.
[57]
Wen G, Chen Z H, Wan Q Q, Zhao D, Xu X Q, Wang J Y, Li K, Huang T L. Chem. Eng. J., 2020, 382: 123003.
[58]
Hassaballah A H, Nyitrai J, Hart C H, Dai N, Sassoubre L M. Environ. Sci.: Water Res. Technol., 2019, 5(8): 1453.
[59]
Maffei F, Buschini A, Rossi C, Poli P L, Forti G C, Hrelia P. Environ. Mol. Mutagen., 2005, 46(2): 116.
[60]
Buschini A, Martino A, Gustavino B, Monfrinotti M, Poli P, Rossi C, Santoro M, Dörr A J M, Rizzoni M. Genet. Toxicol. Environ. Mutagen., 2004, 557(2): 119.
[61]
Guzzella L, Monarca S, Zani C, Feretti D, Zerbini I, Buschini A, Poli P L, Rossi C, Richardson S D. Genet. Toxicol. Environ. Mutagen., 2004, 564(2): 179.

Funding

National Natural Science Foundation of China(2019YFC0408801)
PDF(3290 KB)

Accesses

Citation

Detail

Sections
Recommended

/