Research and Application of Materials and Micro/Nano Structures for Light Manipulation

Sainan Zhang, Cuixia Wu, Junhui He, Mingxian Wang, Shuangzhi Qin

Prog Chem ›› 2023, Vol. 35 ›› Issue (8) : 1136-1153.

PDF(13728 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(13728 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (8) : 1136-1153. DOI: 10.7536/PC221223
Review

Research and Application of Materials and Micro/Nano Structures for Light Manipulation

Author information +
History +

Abstract

Solar energy, as one of the cleanest energy sources, is a precious resource endowed by nature to humanity. The solar spectrum and radiation intensity have a direct impact on human production and life, and how to utilize sunlight more efficiently has always been a goal pursued by scientists. This review systematically introduces the materials that can be used for light regulation, as well as their synthesis methods, and optical properties, including static light manipulation materials (such as UV shielding agents, visible light regulation materials, and infrared light regulation materials), stimulus responsive intelligent light manipulation materials (photoluminescence materials, intelligent color changing materials, etc.), and biomimetic micro/nanostructure materials. And further summarized the effects of light manipulation (including light wavelength, light intensity, and light propagation direction) that can be achieved using different types of light manipulation materials (micro nano structures). Finally, the current application status and development prospects of light manipulation materials and technologies in energy-saving buildings (including smart windows), agricultural films, solar photovoltaic power generation, and other fields were comprehensively summarized.

Contents

1 Introduction

2 Classification and optical properties of light manipulation materials

2.1 Static light manipulation materials

2.2 Stimulation-responsive intelligent light manipulation materials

2.3 Biomimetic micro/nano structural materials

3 Application of light manipulation materials and technology

3.1 Energy-saving building

3.2 Agricultural film

3.3 Photovoltaic power generation

4 Conclusion and outlook

Key words

light manipulation / light manipulation materials / biomimetic micro/nano structure / energy-saving building / agricultural film / solar cell

Cite this article

Download Citations
Sainan Zhang , Cuixia Wu , Junhui He , et al . Research and Application of Materials and Micro/Nano Structures for Light Manipulation[J]. Progress in Chemistry. 2023, 35(8): 1136-1153 https://doi.org/10.7536/PC221223

References

[1]
Turkson C, Acquaye A, Liu W B, Papadopoulos T. J. Environ. Manag., 2020, 264: 110464.
[2]
Green M A. Prog. Photovolt: Res. Appl., 2012, 20(8): 954.
[3]
Shen L H, Yin X B. Nano Converg., 2022, 9(1): 36.
[4]
Wu B S, Rufyikiri A S, Orsat V, Lefsrud M G. Plant Sci., 2019, 289: 110272.
[5]
Liu Y, Gui Z G, Liu J L. Polymers, 2022, 14(5): 851.
[6]
Qian D F, Li Y F, Niu F X, O'Neill Z. Energy Convers. Manag., 2019, 188: 1.
[7]
Cui Y, Xu Y, Yao H F, Bi P Q, Hong L, Zhang J Q, Zu Y F, Zhang T, Qin J Z, Ren J Z, Chen Z H, He C, Hao X T, Wei Z X, Hou J H. Adv. Mater., 2021, 33(41): 2102420.
[8]
Torabi N, Behjat A, Zhou Y H, Docampo P, Stoddard R J, Hillhouse H W, Ameri T. Mater. Today Energy, 2019, 12: 70.
[9]
LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N, Henry A. Nature, 2022, 604(7905): 287.
[10]
Jia Y T, Alva G, Fang G Y. Renew. Sustain. Energy Rev., 2019, 102: 249.
[11]
Saifullah M, Gwak J, Yun J H. J. Mater. Chem. A, 2016, 4(22): 8512.
[12]
Gorjian S, Bousi E, Özdemir Ö E, Trommsdorff M, Kumar N M, Anand A, Kant K, Chopra S S. Renew. Sustain. Energy Rev., 2022, 158: 112126.
[13]
Su K S, Tao Y Y, Zhang J. J. Mater. Sci., 2021, 56(30): 17353.
[14]
MacKie R M. Prog. Biophys. Mol. Biol., 2006, 92(1): 92.
[15]
Forsthuber B, Schaller C, Grüll G. Wood Sci. Technol., 2013, 47(2): 281.
[16]
Aloui F, Ahajji A, Irmouli Y, George B, Charrier B, Merlin A. Appl. Surf. Sci., 2007, 253(8): 3737.
[17]
Carstensen L, Beil S, Börnick H, Stolte S. J. Hazard. Mater., 2022, 430: 128495.
[18]
Kumasaka R, Kikuchi A, Yagi M. Photochem. Photobiol., 2014, 90: 727.
[19]
Santos B A M C, da Silva A C P, Bello M L, Gonçalves A S, Gouvêa T A, Rodrigues R F, Cabral L M, Rodrigues C R. J. Photochem. Photobiol. A Chem., 2018, 356: 219.
[20]
Li L, Mang Y, Jin D, Chen L G. J. Heterocyclic Chem., 2015, 52(1): 201.
[21]
Arct J, Dul M, Rabek J F, Ranby B. Eur. Polym. J., 1981, 17(10): 1041.
[22]
Malshe V C, Elango S. Surf. Coat. Int. B Coat. Trans., 2004, 87(4): 277.
[23]
Fukuchi S, Yagi M, Oguchi-Fujiyama N, Kang J, Kikuchi A. Photochem. Photobiol. Sci., 2019, 18(6): 1556.
[24]
Oda H. Color. Technol., 2012, 128(2): 108.
[25]
Gerlock J L, Tang W, Dearth M A, Korniski T J. Polym. Degrad. Stab., 1995, 48(1): 121.
[26]
Fajzulin I, Zhu X M, Möller M. J. Coat. Technol. Res., 2015, 12(4): 617.
[27]
Jose S, Joshy D, Narendranath S B, Periyat P. Sol. Energy Mater. Sol. Cells, 2019, 194: 7.
[28]
Pfaff G. ChemTexts, 2022, 8(3): 15.
[29]
Levinson R, Berdahl P, Akbari H. Sol. Energy Mater. Sol. Cells, 2005, 89(4): 319.
[30]
Chen W Q, Song Y J, Zhang L Y, Liu M, Hu X, Zhang Q C. Angew. Chem. Int. Ed., 2018, 57(21): 6289.
[31]
Rosati A, Fedel M, Rossi S. J. Clean. Prod., 2021, 313: 127826.
[32]
Zhang J, Zhu C X, Lv J, Zhang W C, Feng J. ACS Appl. Mater. Interfaces, 2018, 10(46): 40219.
[33]
Jaoua-Bahloul H, Varieras D, Beyou E. J. Vinyl Addit. Technol., 2019, 25(S1): E188.
[34]
Zhou W W, Liu Y, Sun Q, Ye J Y, Chen L, Wang J, Li G Q, Lin H, Ye Y Q, Chen W F. ACS Sustainable Chem. Eng., 2021, 9(36): 12385.
[35]
Otanicar T P, DeJarnette D, Hewakuruppu Y, Taylor R A. Adv. Opt. Photon., 2016, 8(3): 541.
[36]
Noguez C. J. Phys. Chem. C, 2007, 111(10): 3806.
[37]
Guerra L F, Muir T W, Yang H. Nano Lett., 2019, 19(8): 5530.
[38]
Huang X, El-Sayed M A. J. Adv. Res., 2010, 1: 13.
[39]
Fang M M, Yang J, Li Z. Prog. Mater. Sci., 2022, 125: 100914.
[40]
Weber W H, Lambe J. Appl. Opt., 1976, 15(10): 2299.
[41]
Reisfeld R, Neuman S. Nature, 1978, 274(5667): 144.
[42]
Ronda C R, Jüstel T, Nikol H. J. Alloys Compd., 1998, 275-277: 669.
[43]
Liu Y X, Yue X J, Cai K, Deng H D, Zhang M. Energy, 2015, 93: 1413.
[44]
Yang Y G, Wang X P, Liu B. Nano, 2014, 9(1): 1450008.
[45]
Nakamura T, Yanagida S, Wada Y J. Res. Chem. Intermed., 2006, 32(3-4): 331.
[46]
Zhou L Y, Shi J X, Gong M L. J. Phys. Chem. Solids, 2007, 68(8): 1471.
[47]
Fisher M J, Wang W, Dorhout P K, Fisher E R. J. Phys. Chem. C, 2008, 112(6): 1901.
[48]
Ji H M, Tang X Z, Zhang H Y, Li X L, Qian Y N. Coatings, 2021, 11(4): 383.
[49]
Li S C, Yu L X, Sun J J, Man X Q. J. Rare Earths, 2017, 35(4): 347.
[50]
Moeckli P. Dyes Pigments, 1980, 1(1): 3.
[51]
Chen C H, Fox J L, Lippert J L. J. Heterocycl. Chem., 1987, 24(4): 931.
[52]
Bai G, Li J F, Li D X, Dong C, Han X Y, Lin P H. Dyes Pigments, 2007, 75(1): 93.
[53]
Gunkara O T, Bagdatli E, Ocal N. J. Chem. Res., 2013, 37(4): 227.
[54]
Natarajan A, Boden E P, Burns A, McCloskey P J, Rishel M J. Tetrahedron Lett., 2014, 55(30): 4222.
[55]
Li R H, Fan Y Y, Li J C, Tang B, Fan J T, He J, Ren J J, Wang J, Zhang L. J. Phys. Chem. C, 2011, 115(18): 9176.
[56]
Wang H, Ji X F, Li Z T, Huang F H. Adv. Mater., 2017, 29(14): 1606117.
[57]
Li B, He T, Shen X, Tang D T, Yin S C. Polym. Chem., 2019, 10(7): 796.
[58]
Ma H H, Song Q S, Xu Y H, Yao W. Pigment. Resin Technol., 2013, 42(6): 388.
[59]
Huang L, Wang J, Zhang H P, Zu G N, Wang Z T, Fu Y H. J. Rare Earths, 2023, 41(1): 60.
[60]
Gu Q Y, Yuan M W, Ma S L, Sun G B. J. Lumin., 2017, 192: 1211.
[61]
Yang W Q, Li X H, Fei L L, Liu W Z, Liu X L, Xu H Y, Liu Y C. Green Chem., 2022, 24(2): 675.
[62]
Liu N, Tang M. J. Hazard. Mater., 2020, 399: 122606.
[63]
Wang B Y, Lu S Y. Matter, 2022, 5(1): 110.
[64]
Wareing T C, Gentile P, Phan A N. ACS Nano, 2021, 15(10): 15471.
[65]
Li S, Li L, Tu H Y, Zhang H, Silvester D S, Banks C E, Zou G Q, Hou H S, Ji X B. Mater. Today, 2021, 51: 188.
[66]
Xia C L, Zhu S J, Feng T L, Yang M X, Yang B. Adv. Sci., 2019, 6(23): 1901316.
[67]
Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44(1): 362.
[68]
Shi W Q, Han Q R, Wu J J, Ji C Y, Zhou Y Q, Li S H, Gao L P, Leblanc R M, Peng Z L. Int. J. Mol. Sci., 2022, 23(3): 1456.
[69]
Peng J, Gao W, Gupta B K, Liu Z, Romero-Aburto R, Ge L H, Song L, Alemany L B, Zhan X B, Gao G H, Vithayathil S A, Kaipparettu B A, Marti A A, Hayashi T, Zhu J J, Ajayan P M. Nano Lett., 2012, 12(2): 844.
[70]
Zhao D L, Chung T S. Water Res., 2018, 147: 43.
[71]
Choi Y, Choi Y, Kwon O H, Kim B S. Chem. Asian J., 2018, 13(6): 586.
[72]
Li W, Wu S S, Zhang H R, Zhang X J, Zhuang J L, Hu C F, Liu Y L, Lei B F, Ma L, Wang X J. Adv. Funct. Mater., 2018, 28(44): 1804004.
[73]
Sendão R, del Valle Martínez de Yuso M, Algarra M, Esteves da Silva J C G, Pinto da Silva L. J. Clean. Prod., 2020, 254: 120080.
[74]
Li L, Li Y T, Ye Y, Guo R T, Wang A N, Zou G Q, Hou H S, Ji X B. ACS Nano, 2021, 15(4): 6872.
[75]
Lang F P, Wang H, Zhang S J, Liu J B, Yan H. Int. J. Thermophys., 2017, 39(1): 1.
[76]
Bin Ahmad Kayani A, Kuriakose S, Monshipouri M, Khalid F A, Walia S, Sriram S, Bhaskaran M. Small, 2021, 17(32): 2100621.
[77]
Cheng Y, Zhang X, Fang C, Chen J, Wang Z. J. Mater. Sci. Technol., 2018, 34: 2225.
[78]
Wang X J, Narayan S. Front. Energy Res., 2021, 9: 800382.
[79]
Crosby P H N, Netravali A N. Adv. Sustain. Syst., 2022, 6(9): 2200208.
[80]
Wen R T, Arvizu M A, Niklasson G A, Granqvist C G. Surf. Coat. Technol., 2016, 290: 135.
[81]
Sun J W, Chen Y N, Liang Z Q. Adv. Funct. Mater., 2016, 26(17): 2783.
[82]
Guo Q Q, Zhang X X. Compos. B Eng., 2021, 227: 109434.
[83]
Ishijima Y, Imai H, Oaki Y. Chem, 2017, 3(3): 509.
[84]
Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N. Science, 2007, 318(5857): 1750.
[85]
Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Dürr H A, Samant M G, Parkin S S P. Nat. Phys., 2013, 9(10): 661.
[86]
Xu F, Cao X, Luo H J, Jin P. J. Mater. Chem. C, 2018, 6(8): 1903.
[87]
Lan S D, Chang C J, Huang C F, Chen J K. RSC Adv., 2015, 5(90): 73742.
[88]
Zhou Y, Cai Y F, Hu X, Long Y. J. Mater. Chem. A, 2015, 3(3): 1121.
[89]
Wheeler L M, Moore D T, Ihly R, Stanton N J, Miller E M, Tenent R C, Blackburn J L, Neale N R. Nat. Commun., 2017, 8: 1722.
[90]
Liu S, Du Y W, Tso C Y, Lee H H, Cheng R, Feng S P, Yu K M. Adv. Funct. Mater., 2021, 31(26): 2010426.
[91]
Yang G J, Zhang Y M, Cai Y R, Yang B G, Gu C, Zhang S X A. Chem. Soc. Rev., 2020, 49(23): 8687.
[92]
Deb S K. Sol. Energy Mater. Sol. Cells, 2008, 92(2): 245.
[93]
Lee S H, Deshpande R, Parilla P A, Jones K M, To B, Mahan A H, Dillon A C. Adv. Mater., 2006, 18(6): 763.
[94]
Zhang S L, Cao S, Zhang T R, Yao Q F, Fisher A, Lee J Y. Mater. Horiz., 2018, 5(2): 291.
[95]
Wang J L, Lu Y R, Li H H, Liu J W, Yu S H. J. Am. Chem. Soc., 2017, 139: 9921.
[96]
Teng Neo W, Ye Q, Chua S J, Xu J W. J. Mater. Chem. C, 2016, 4(31): 7364.
[97]
Chua M H, Zhu Q, Shah K W, Xu J W. Polymers, 2019, 11(1): 98.
[98]
Dey T, Invernale M A, Ding Y J, Buyukmumcu Z, Sotzing G A. Macromolecules, 2011, 44(8): 2415.
[99]
Chen X H, Qiao W Q, Wang Z Y. RSC Adv., 2017, 7(25): 15521.
[100]
Tadepalli S, Slocik J M, Gupta M K, Naik R R, Singamaneni S. Chem. Rev., 2017, 117(20): 12705.
[101]
Dou S L, Xu H B, Zhao J P, Zhang K, Li N, Lin Y P, Pan L, Li Y. Adv. Mater., 2021, 33(6): 2000697.
[102]
Pavarini E, Andreani L, Soci C, Galli M, Marabelli F, Comoretto D. Phys. Rev. B, 2005, 72(4): 045102.
[103]
Saito A, Nakajima M, Miyamura Y, Sogo K, Ishikawa Y, Hirai Y. Rroc. SPIE, 2006, 63270Z.
[104]
O'Brien P G, Yang Y, Chutinan A, Mahtani P, Leong K, Puzzo D P, Bonifacio L D, Lin C W, Ozin G A, Kherani N P. Sol. Energy Mater. Sol. Cells, 2012, 102: 173.
[105]
Han Z W, Wang Z, Feng X M, Li B, Mu Z Z, Zhang J Q, Niu S C, Ren L Q. Biosurf. Biotribol., 2016, 2(4): 137.
[106]
Kuo W K, Hsu J J, Nien C K, Yu H H. ACS Appl. Mater. Interfaces, 2016, 8(46): 32021.
[107]
Mizoshita N, Tanaka H. ACS Appl. Mater. Interfaces, 2016, 8(45): 31330.
[108]
Vijselaar W, Elbersen R, Tiggelaar R M, Gardeniers H, Huskens J. Adv. Energy Mater., 2017, 7(7): 1601497.
[109]
De Nicola F, Hines P, De Crescenzi M, Motta N. Carbon, 2016, 108: 262.
[110]
Jin B B, He J H. ACS Photonics, 2017, 4(1): 188.
[111]
Ren T T, He J H. ACS Appl. Mater. Interfaces, 2017, 9(39): 34367.
[112]
Lin S, Bai X P, Wang H Y, Wang H L, Song J N, Huang K, Wang C, Wang N, Li B, Lei M, Wu H. Adv. Mater., 2017, 29(41): 1703238.
[113]
Seyyedi M, Rostami A, Mirtagioglu H. Opt. Quantum Electron., 2022, 54(8): 494.
[114]
Clough J M, Weder C, Schrettl S. Macromol. Rapid Commun., 2021, 42(1): 2000528.
[115]
Zhao Y J, Xie Z Y, Gu H C, Zhu C, Gu Z Z. Chem. Soc. Rev., 2012, 41(8): 3297.
[116]
Gur D, Leshem B, Pierantoni M, Farstey V, Oron D, Weiner S, Addadi L. J. Am. Chem. Soc., 2015, 137(26): 8408.
[117]
Sun Z Q, Xie X M, Xu W L, Chen K, Liu Y H, Chu X X, Niu Y Z, Zhang S H, Ren C G. ACS Sustainable Chem. Eng., 2021, 9(38): 12949.
[118]
Li T, Zhu M W, Yang Z, Song J W, Dai J Q, Yao Y G, Luo W, Pastel G, Yang B, Hu L B. Adv. Energy Mater., 2016, 6(22): 1601122.
[119]
Sklar L R, Almutawa F, Lim H W, Hamzavi I. Photochem. Photobiol. Sci., 2013, 12(1): 54.
[120]
Wang S C, Zhou Y, Jiang T Y, Yang R G, Tan G, Long Y. Nano Energy, 2021, 89: 106440.
[121]
Ke Y J, Zhou C Z, Zhou Y, Wang S C, Chan S H, Long Y. Adv. Funct. Mater., 2018, 28(22): 1800113.
[122]
Shaik S, Gorantla K, Venkata Ramana M, Mishra S, Kulkarni K S. Constr. Build. Mater., 2020, 263: 120155.
[123]
Long L S, Ye H. Sci. Rep., 2014, 4: 6427.
[124]
Jelle B P, Hynd A, Gustavsen A, Arasteh D, Goudey H, Hart R. Sol. Energy Mater. Sol. Cells, 2012, 96: 1.
[125]
Takeda H, Adachi K. J. Am. Ceram. Soc., 2007, 90: 4059.
[126]
Wu S, Zhao Q N, Miao D K, Dong Y H. J. Rare Earths, 2010, 28: 189.
[127]
Aburas M, Soebarto V, Williamson T, Liang R Q, Ebendorff-Heidepriem H, Wu Y P. Appl. Energy, 2019, 255: 113522.
[128]
Jung K H, Yun S J, Slusar T, Kim H T, Roh T M. Appl. Surf. Sci., 2022, 589: 152962.
[129]
Lee H Y, Cai Y F, Velioglu S, Mu C Z, Chang C J, Chen Y L, Song Y J, Chew J W, Hu X M. Chem. Mater., 2017, 29(16): 6947.
[130]
Wu M C, Shi Y, Li R Y, Wang P. ACS Appl. Mater. Interfaces, 2018, 10(46): 39819.
[131]
Liu S, Li Y, Wang Y, Yu K M, Huang B L, Tso C Y. Adv. Sci., 2022, 9(14): 2106090.
[132]
Ke Y J, Yin Y, Zhang Q T, Tan Y T, Hu P, Wang S C, Tang Y C, Zhou Y, Wen X L, Wu S F, White T J, Yin J, Peng J Q, Xiong Q H, Zhao D Y, Long Y. Joule, 2019, 3(3): 858.
[133]
Lei Z Y, Wu B H, Wu P Y. Research, 2021, 2021: 4515164.
[134]
Chiang C, Bånkestad D, Hoch G. Agronomy, 2021, 11(4): 755.
[135]
Xiao L R, Shibuya T, Kato K, Nishiyama M, Kanayama Y. Sci. Hortic., 2022, 300: 111076.
[136]
Bergstrand K J, Mortensen L M, Suthaparan A, Gislerød H R. Sci. Hortic., 2016, 204: 1.
[137]
Qi Y P, Wang Y T, Yu Y J, Liu Z Y, Zhang Y, Qi Y, Zhou C T. J. Mater. Chem. C, 2016, 4(47): 11291.
[138]
Chen X. Jilin Agriculture, 1995, 5: 20.
(陈华湘. 吉林农业, 1995, 5: 20.).
[139]
Li S. Rural Applied Technology and Information, 1994, 4: 13.
(利双. 农村实用技术与信息, 1994, 4: 13.).
[140]
Kim K W, Kim G H, Kwon S H, Yoon H I, Son J E, Choi J H. Dyes Pigments, 2018, 158: 353.
[141]
Wang Y T, Yu Y J, Liu W J, Ren L T, Ge G X. J. Agric. Food Chem., 2018, 66(50): 13295.
[142]
Wu W B, Zhang Z B, Dong R Y, Xie G N, Zhou J X, Wu K J, Zhang H N, Cai Q P, Lei B F. J. Rare Earths, 2020, 38(5): 539.
[143]
Wang D, Wang H Y, Qian B F, Zou H F, Zheng K Y, Zhou X Q, Song Y H, Sheng Y. J. Lumin., 2020, 219: 116844.
[144]
Wang X F, Ke J B, Wang Y F, Liang Y P, He J L, Song Z R, Lian S X, Qiu Z X. ACS Agric. Sci. Technol., 2021, 1(2): 55.
[145]
Liang Y P, He J L, Song Z R, Han Y, Qiu Z X, Zhou W L, Zhang J L, Yu L P, Lian S X. ACS Appl. Mater. Interfaces, 2022, 14(1): 1413.
[146]
Xi P, Gu X H, Huang X G. J. Macromol. Sci. B, 2006, 45(4): 525.
[147]
Wang D M, Yu Y L, Ai X, Pan H W, Zhang H L, Dong L S. Polym. Adv. Technol., 2019, 30(1): 203.
[148]
Yu Y L, Xu P F, Jia S L, Pan H W, Zhang H L, Wang D M, Dong L S. Int. J. Biol. Macromol., 2019, 127: 210.
[149]
Shoji S, Saito H, Jitsuyama Y, Tomita K, Qiang H Y, Sakurai Y, Okazaki Y, Aikawa K, Konishi Y, Sasaki K, Fushimi K, Kitagawa Y, Suzuki T, Hasegawa Y. Sci. Rep., 2022, 12: 17155.
[150]
He J L, He Y L, Zhuang J L, Zhang H R, Lei B F, Liu Y L. Opt. Mater., 2016, 62: 458.
[151]
Xie Y, Geng X, Gao J, Shi W, Zhou Z J, Wang H, Zhang D, Deng B, Yu R J. J. Alloys Compd., 2021, 873: 159663.
[152]
Shen L H, Lou R N, Park Y, Guo Y N, Stallknecht E J, Xiao Y Z, Rieder D, Yang R G, Runkle E S, Yin X B. Nat. Food, 2021, 2(6): 434.
[153]
Lou R, Shen L, Yin X. Opt. Express, 2022, 30: 4642.
[154]
Liu Y Q, Li Y J, Wu Y L, Yang G T, Mazzarella L, Procel-Moya P, Tamboli A C, Weber K, Boccard M, Isabella O, Yang X B, Sun B Q. Mater. Sci. Eng. R Rep., 2020, 142: 100579.
[155]
Mehmood H, Tauqeer T, Hussain S. Int. J. Electron., 2018, 105(9): 1568.
[156]
Mamta, Maurya K, Singh V. Coatings, 2022, 12(3): 405.
[157]
Murakami T N, Koumura N. Adv. Energy Mater., 2019, 9(23): 1802967.
[158]
Yun S N, Qin Y, Uhl A R, Vlachopoulos N, Yin M, Li D D, Han X G, Hagfeldt A. Energy Environ. Sci., 2018, 11(3): 476.
[159]
Bicer Y, Dincer I, Zamfirescu C. Int. J. Hydrog. Energy, 2016, 41(19): 7935.
[160]
Cole J M, Pepe G, Al Bahri O K, Cooper C B. Chem. Rev., 2019, 119(12): 7279.
[161]
Liu X J, Chen T Q, Gong Y Y, Li C, Niu L Y, Xu S Q, Xu X T, Pan L K, Shapter J G, Yamauchi Y, Na J, Eguchi M. J. Photochem. Photobiol. C Photochem. Rev., 2021, 47: 100404.
[162]
Li D Y, Ågren H, Chen G Y. Dalton Trans., 2018, 47(26): 8526.
[163]
Yao N N, Huang J Z, Fu K, Deng X L, Ding M, Shao M H, Xu X J. Electrochim. Acta, 2015, 154: 273.
[164]
Ali Shah S A, Sayyad M H, Sun J H, Guo Z Y. J. Rare Earths, 2022, 40(11): 1651.
[165]
de la Mora M B, Amelines-Sarria O, Monroy B M, Hernández-PÉrez C D, Lugo J E. Sol. Energy Mater. Sol. Cells, 2017, 165: 59.
[166]
Datt R, Bishnoi S, Hughes D, Mahajan P, Singh A, Gupta R, Arya S, Gupta V, Tsoi W C. Sol. RRL, 2022, 6(8): 2200266.
[167]
Wu J H, Xie G X, Lin J M, Lan Z, Huang M L, Huang Y F. J. Power Sources, 2010, 195(19): 6937.
[168]
Chen S Y, Lin J M, Wu J H. Appl. Surf. Sci., 2014, 293: 202.
[169]
Wu J H, Wang J L, Lin J M, Xiao Y M, Yue G T, Huang M L, Lan Z, Huang Y F, Fan L Q, Yin S, Sato T. Sci. Rep., 2013, 3: 2058.
[170]
Cui J, Li P F, Chen Z F, Cao K, Li D, Han J B, Shen Y, Peng M Y, Fu Y Q, Wang M K. Appl. Phys. Lett., 2016, 109(17): 171103.
[171]
Pan Z X, Rao H S, Mora-SerÓ I, Bisquert J, Zhong X H. Chem. Soc. Rev., 2018, 47(20): 7659.
[172]
Gao N X, Huang L B, Li T Y, Song J H, Hu H W, Liu Y, Ramakrishna S. J. Appl. Polym. Sci., 2020, 137(10): 48443.
[173]
Urbani M, Ragoussi M E, Nazeeruddin M K, Torres T. Coord. Chem. Rev., 2019, 381: 1.
[174]
Liu Y, Li F, Shi G Z, Liu Z K, Lin X F, Shi Y, Chen Y F, Meng X, Lv Y, Deng W, Pan X Q, Ma W L. ACS Energy Lett., 2020, 5(12): 3797.
[175]
Rezaei B, Irannejad N, Ensafi A A, Kazemifard N. Sol. Energy, 2019, 182: 412.
[176]
AlGhamdi J M, AlOmar S, Gondal M A, Moqbel R, Dastageer M A. Sol. Energy, 2020, 209: 108.
[177]
Zheng X Z, Zhang L W. Energy Environ. Sci., 2016, 9(8): 2511.
[178]
Liu D W, Cheng I C, Chen J Z, Chen H W, Ho K C, Chiang C C. Opt. Express, 2012, 20(S2): A168.
[179]
Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y. ACS Nano, 2014, 8(4): 3302.
[180]
Nishimura S, Abrams N, Lewis B A, Halaoui L I, Mallouk T E, Benkstein K D, van de Lagemaat J, Frank A J. J. Am. Chem. Soc., 2003, 125(20): 6306.
[181]
Meng K, Gao S S, Wu L L, Wang G, Liu X, Chen G, Liu Z, Chen G. Nano Lett., 2016, 16(7): 4166.

Funding

National Key Research and Development Program of China(No.2019Q(Y)Y)0503)
National Natural Science Foundation of China(91963104)
Technical Institute of Physics and Chemistry and Joint R&D Laboratory for Functional Agriculture Films.
PDF(13728 KB)

Accesses

Citation

Detail

Sections
Recommended

/