Condensed Matter Chemistry in Nitrogen Fixation

Xueli Wang, Qianru Wang, Di Li, Junnian Wei, Jianping Guo, Liang Yu, Dehui Deng, Ping Chen, Zhenfeng Xi

Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 904-917.

PDF(8394 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8394 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 904-917. DOI: 10.7536/PC221224
Review

Condensed Matter Chemistry in Nitrogen Fixation

Author information +
History +

Abstract

Nitrogen is an indispensable element for life and the material world. The development of efficient conversion strategies to transform dinitrogen gas into various valuable nitrogen-containing compounds is of great economic and scientific importance. The activation and transformation of dinitrogen molecule is an eternal topic in chemistry, and it is of profound significance to understand nitrogen fixation from the level of condensed matter chemistry. Several related examples have been illustrated here to discuss the effects of condensed matter phenomena in nitrogen fixation chemistry. Some critical scientific problems in the field are discussed from three aspects: nitrogen fixation in homogeneous solution, heterogeneous ammonia synthesis, and coupling multiple energy for N2/O2 conversion. We hope this review will inspire more chemists to think about the fundamental nature of nitrogen fixation chemistry from the perspective of condensed matter chemistry, offering more ideas to solve the related problems.

Contents

1 Introduction

2 Condensed matter chemistry in nitrogen fixation in homogeneous solution systems

3 Condensed matter chemistry in heterogeneous ammonia synthesis

4 Condensed matter chemistry in the coupling multiple energy for N2/O2conversion

4.1 N2/O2conversion by non-thermal plasmas

4.2 N2/O2conversion by electrochemistry

4.3 N2/O2conversion by ultra sound

4.4 N2/O2conversion by photochemistry

5 Conclusion and outlook

Key words

condensed state / dinitrogen gas / nitrogen fixation / ammonia synthesis

Cite this article

Download Citations
Xueli Wang , Qianru Wang , Di Li , et al . Condensed Matter Chemistry in Nitrogen Fixation[J]. Progress in Chemistry. 2023, 35(6): 904-917 https://doi.org/10.7536/PC221224

References

[1]
Xu R R. Natl. Sci. Rev., 2018, 5: 1.
[2]
Xu R R, Wang K, Chen G, Yan W F. Natl. Sci. Rev., 2019, 6(2): 191.
[3]
Xu R R, Yu J H, Yan W F. Prog. Chem., 2020, 32(8): 1017.
( 徐如人, 于吉红, 闫文付. 化学进展, 2020, 32(8): 1017.).
[4]
Transition Metal-Dinitrogen Complexes. Ed.: Nishibayashi Y. Wiley-VCH, 2018.
[5]
Lv Z J, Huang Z, Shen J H, Zhang W X, Xi Z F. J. Am. Chem. Soc., 2019, 141(51): 20547.
[6]
Chen X, Xu H H, Shi X H, Wei J N, Xi Z F. Acta Chim. Sinica, 2022, 80: 1299.
( 陈霄, 许汉华, 石向辉, 魏俊年, 席振峰. 化学学报, 2022, 80(9): 1299.).
[7]
Wang G X, Yan X C, Yin J H, Yin Z B, Wei J N, Xi Z F. Chem. A Eur. J., 2022, 28(67): e202202803.
[8]
Li H J, Feng R, Wang G X, Wei J N, Xi Z F. Dalton Trans., 2022, 51(44): 16811.
[9]
Wang G X, Yin J H, Li J P, Yin Z B, Wu B T, Wei J N, Zhang W X, Xi Z F. CCS Chem., 2021, 3(12): 308.
[10]
Wang C H, Yin Z B, Wei J N, Zhang W X, Xi Z F. Tetrahedron, 2020, 76(50): 131703.
[11]
Li J P, Yin J H, Wang G X, Yin Z B, Zhang W X, Xi Z F. Chem. Commun., 2019, 55(65): 9641.
[12]
Walter M D. Advances in Organometallic Chemistry. New York: Academic Press, 2016. 261.
[13]
Allen A D, Senoff C V. Chem. Commun. (London), 1965(24): 621.
[14]
Enemark J H, Davis B R, McGinnety J A, Ibers J A. Chem. Commun. (London), 1968,(2): 96.
[15]
Lv Z J, Wei J N, Zhang W X, Chen P, Deng D H, Shi Z J, Xi Z F. Natl. Sci. Rev., 2020, 7(10): 1564.
[16]
Kim S, Loose F, Chirik P J. Chem. Rev., 2020, 120(12): 5637.
[17]
Li J P, Yin J H, Yu C, Zhang W X, Xi Z F. Acta Chim. Sinica, 2017, 75: 733.
( 李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰. 化学学报, 2017, 75(8): 733.).
[18]
Zhai D D, Zhang S Q, Xie S J, Wu R K, Liu F, Xi Z F, Hong X, Shi Z J. J. Am. Chem. Soc., 2022, 144(31): 14071.
[19]
Zhong M D, Cui X L, Wu B T, Wang G X, Zhang W X, Wei J N, Zhao L L, Xi Z F. CCS Chem., 2022, 4(2): 532.
[20]
Shi X H, Wang Q R, Qin C, Wu L J, Chen Y J, Wang G X, Cai Y L, Gao W B, He T, Wei J N, Guo J P, Chen P, Xi Z F. Natl. Sci. Rev., 2022, 9(12): nwac168.
[21]
Chatt J, Pearman A J, Richards R L. Nature, 1975, 253(5486): 39.
[22]
Yandulov D V, Schrock R R. Science, 2003, 301(5629): 76.
[23]
Arashiba K, Miyake Y, Nishibayashi Y. Nat. Chem., 2011, 3(2): 120.
[24]
Anderson J S, Rittle J, Peters J C. Nature, 2013, 501(7465): 84.
[25]
Brintzinger H, Bercaw J E. J. Am. Chem. Soc., 1971, 93(8): 2045.
[26]
Sanner R D, Duggan D M, McKenzie T C, Marsh R E, Bercaw J E. J. Am. Chem. Soc., 1976, 98(26): 8358.
[27]
Manriquez J M, McAlister D R, Rosenberg E, Shiller A M, Williamson K L, Chan S I, Bercaw J E. J. Am. Chem. Soc., 1978, 100(10): 3078.
[28]
Hanna T E, Lobkovsky E, Chirik P J. Organometallics, 2009, 28(14): 4079.
[29]
Hanna T E, Bernskoetter W H, Bouwkamp M W, Lobkovsky E, Chirik P J. Organometallics, 2007, 26(9): 2431.
[30]
Semproni S P, Milsmann C, Chirik P J. Organometallics, 2012, 31(9): 3672.
[31]
Didenko L P, Gavrilov A B, Shilova A K, Strelets V V, Tsarev V N, Shilov A E, Makhaev V D, Banerjee A K, Pospisil L. Nouveau J. de Chim.-New J. Chem., 1987, 18(11): 583.
[32]
Kuznetsov D A, Fedyanin I V, Lyssenko K A, Bazhenova T A. Dalton Trans., 2014, 43(34): 12876.
[33]
Yin J H, Li J P, Wang G X, Yin Z B, Zhang W X, Xi Z F. J. Am. Chem. Soc., 2019, 141(10): 4241.
[34]
Guo J P, Chen P. Chem. Bull., 2019, 64(11):1114.
( 郭建平, 陈萍. 科学通报, 2019, 64 (11): 1114.).
[35]
Wang Q R, Guo J P, Chen P. J. Energy Chem., 2019, 36: 25.
[36]
Liu H Z. Chin. J. Catal., 2014, 35(10): 1619.
[37]
Ertl G. Angew. Chem. Int. Ed., 2008, 47(19): 3524.
[38]
Ertl G. Catal. Rev., 1980, 21(2): 201.
[39]
Vojvodic1 A, Nørskov J K. Natl. Sci. Rev., 2015, 2: 140.
[40]
Nørskov J K, Bligaard T, Rossmeisl J, Christensen C H. Nat. Chem., 2009, 1(1): 37.
[41]
van der Ham C J M, Koper M T M, Hetterscheid D G H. Chem. Soc. Rev., 2014, 43(15): 5183.
[42]
Dumesic J A, Topsøe H, Khammouma S, Boudart M. J. Catal., 1975, 37: 503.
[43]
Somorjai G A, Materer N. Top. Catal., 1994, 1(3/4): 215.
[44]
Mortensen J J, Morikawa Y, Hammer B, Nørskov J K. J. Catal., 1997, 169(1): 85.
[45]
Dahl S, Tornqvist E, Chorkendorff I. J. Catal., 2000, 192(2): 381.
[46]
Li J P, Wang W Y, Chen W X, Gong Q M, Luo J, Lin R Q, Xin H L, Zhang H, Wang D S, Peng Q, Zhu W, Chen C, Li Y D. Nano Res., 2018, 11(9): 4774.
[47]
Li L L, Jiang Y F, Zhang T H, Cai H F, Zhou Y L, Lin B Y, Lin X Y, Zheng Y, Zheng L R, Wang X Y, Xu C Q, Au C T, Jiang L L, Li J. Chem, 2022, 8(3): 749.
[48]
Liu J C, Ma X L, Li Y, Wang Y G, Xiao H, Li J. Nat. Commun., 2018, 9: 1610.
[49]
Ma X L, Liu J C, Xiao H, Li J. J. Am. Chem. Soc., 2018, 140(1): 46.
[50]
Guo J P, Chen P. Acc. Chem. Res., 2021, 54(10): 2434.
[51]
Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H. Nat. Chem., 2012, 4(11): 934.
[52]
Lu Y F, Li J, Tada T, Toda Y, Ueda S, Yokoyama T, Kitano M, Hosono H. J. Am. Chem. Soc., 2016, 138(12): 3970.
[53]
Hosono H, Kitano M. Chem. Rev., 2021, 121(5): 3121.
[54]
Ogura Y, Sato K, Miyahara S I, Kawano Y, Toriyama T, Yamamoto T, Matsumura S, Hosokawa S, Nagaoka K. Chem. Sci., 2018, 9(8): 2230.
[55]
Ogura Y, Tsujimaru K, Sato K, Miyahara S I, Toriyama T, Yamamoto T, Matsumura S, Nagaoka K. ACS Sustainable Chem. Eng., 2018, 6(12): 17258.
[56]
Zhang X L, Liu L, Wu A N, Zhu J F, Si R, Guo J P, Chen R T, Jiang Q K, Ju X H, Feng J, Xiong Z T, He T, Chen P. ACS Catal., 2022, 12(4): 2178.
[57]
Aika K I, Ozaki A. J. Catal., 1970, 19: 350.
[58]
Ertl G, Weiss M, Lee S B. Chem. Phys. Lett., 1979, 60(3): 391.
[59]
Aika K I, Hori H, Ozaki A. J. Catal., 1972, 27: 424.
[60]
Strongin D R, Somorjai G A. J. Catal. 1988, 109: 51.
[61]
Mortensen J J, Hammer B, Nørskov J K. Phys. Rev. Lett., 1998, 80(19): 4333.
[62]
Cao A, Bukas V J, Shadravan V, Wang Z B, Li H, Kibsgaard J, Chorkendorff I, Nørskov J K. Nat. Commun., 2022, 13: 2382.
[63]
Wang P K, Chang F, Gao W B, Guo J P, Wu G T, He T, Chen P. Nat. Chem., 2017, 9(1): 64.
[64]
Wang P K, Xie H, Guo J P, Zhao Z, Kong X T, Gao W B, Chang F, He T, Wu G T, Chen M S, Jiang L, Chen P. Angew. Chem. Int. Ed., 2017, 56(30): 8716.
[65]
Wang Q R, Pan J, Guo J P, Hansen H A, Xie H, Jiang L, Hua L, Li H Y, Guan Y Q, Wang P K, Gao W B, Liu L, Cao H J, Xiong Z T, Vegge T, Chen P. Nat. Catal., 2021, 4(11): 959.
[66]
Bielawa H, Hinrichsen O, Birkner A, Muhler M. Angew. Chem. Int. Ed., 2001, 40(6): 1061.
[67]
Jennings J R. Catalytic Ammonia Synthesis: Fundamentals and Practice. New York: Plenum Press, 1991.
[68]
Gao W B, Guo J P, Wang P K, Wang Q R, Chang F, Pei Q J, Zhang W J, Liu L, Chen P. Nat. Energy, 2018, 3(12): 1067.
[69]
Guan Y Q, Liu C W, Wang Q R, Gao W B, Hansen H A, Guo J P, Vegge T, Chen P. Angew. Chem. Int. Ed., 2022, 61(39): e202205805.
[70]
Canfield D E, Glazer A N, Falkowski P G. Science, 2010, 330(6001): 192.
[71]
Li D, Zan L X, Chen S M, Shi Z J, Chen P, Xi Z F, Deng D H. Natl Sci Rev, 2022, 9(12): nwac042.
[72]
Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. Nat. Geosci., 2008, 1(10): 636.
[73]
Rafiqul I, Weber C, Lehmann B, Voss A. Energy, 2005, 30(13): 2487.
[74]
Patil B S, Wang Q, Hessel V, Lang J. Catal. Today, 2015, 256: 49.
[75]
Fridman A. Plasma Chemistry, London: Cambridge University Press, 2008.
[76]
Mehta P, Barboun P, Herrera F A, Kim J, Rumbach P, Go D B, Hicks J C, Schneider W F. Nat. Catal., 2018, 1(4): 269.
[77]
Pei X K, Gidon D, Graves D B. J. Phys. D: Appl. Phys., 2020, 53(4): 044002.
[78]
Wang W Z, Patil B, Heijkers S, Hessel V, Bogaerts A. ChemSusChem, 2017, 10(10): 21450.
[79]
Jardali F, Van Alphen S, Creel J, Ahmadi Eshtehardi H, Axelsson M, Ingels R, Snyders R, Bogaerts A. Green Chem., 2021, 23(4): 1748.
[80]
Patil B S, Cherkasov N, Lang J, Ibhadon A O, Hessel V, Wang Q. Appl. Catal. B Environ., 2016, 194: 123.
[81]
Abdelaziz A A, Kim H H. J. Phys. D: Appl. Phys., 2020, 53(11): 114001.
[82]
Tang X L, Wang J G, Yi H H, Zhao S Z, Gao F Y, Chu C. Plasma Chem. Plasma Process, 2018, 38(3): 485.
[83]
Jõgi I, Levoll E, Raud J. Chem. Eng. J., 2016, 301: 149.
[84]
Toth J R, Abuyazid N H, Lacks D J, Renner J N, Sankaran R M. ACS Sustainable Chem. Eng., 2020, 8(39): 14845.
[85]
Zhao G B, Hu X D, Argyle M D, Radosz M. Ind. Eng. Chem. Res., 2004, 43(17): 5077.
[86]
Rapakoulias D, Cavadias S, Amouroux J. Rev. Phys. Appl. (Paris), 1980, 15(7): 1261.
[87]
Mehta P, Barboun P M, Engelmann Y, Go D B, Bogaerts A, Schneider W F, Hicks J C. ACS Catal., 2020, 10(12): 6726.
[88]
Rosca V, Duca M, de Groot M T, Koper M T M. Chem. Rev., 2009, 109(6): 2209.
[89]
Wagman D D, Evans W H, Parker V B, Schumm R H, Halow I, Bailey S M, Churney K L, Nuttall R L. The NBS tables of Chemical Thermodynamic Properties, 1982.
[90]
David A A, Robert E H, Willem H K, Sergei V L, Gábor M, Pedatsur N, Branko R, David M S, Steen S, Peter W. Pure Appl. Chem., 2015, 87: 1139.
[91]
Chen J G, Crooks R M, Seefeldt L C, Bren K L, Bullock R M, Darensbourg M Y, Holland P L, Hoffman B, Janik M J, Jones A K, Kanatzidis M G, King P, Lancaster K M, Lymar S V, Pfromm P, Schneider W F, Schrock R R. Science, 2018, 360(6391): eaar6611.
[92]
Schlögl R. Angew. Chem. Int. Edit., 2003, 42: 2004.
[93]
Ertl G. Catal. Rev., 1980, 21(2): 201.
[94]
Logadottir A, Rod T H, Nørskov J K, Hammer B, Dahl S, Jacobsen C J H. J. Catal., 2001, 197(2): 229.
[95]
Wang Y, Yu Y, Jia R, Zhang C, Zhang B. Natl. Sci. Rev., 2019, 6: 730.
[96]
Kuang M, Wang Y, Fang W, Tan H T, Chen M X, Yao J D, Liu C T, Xu J W, Zhou K, Yan Q Y. Adv. Mater., 2020, 32(26): 2002189.
[97]
Zhang L L, Cong M Y, Ding X, Jin Y, Xu F F, Wang Y, Chen L, Zhang L X. Angew. Chem. Int. Ed., 2020, 59(27): 10888.
[98]
Dai C C, Sun Y M, Chen G, Fisher A C, Xu Z J. Angew. Chem. Int. Ed., 2020, 59(24): 9418.
[99]
Fang W, Du C F, Kuang M, Chen M X, Huang W J, Ren H, Xu J W, Feldhoff A, Yan Q Y. Chem. Commun., 2020, 56(43): 5779.
[100]
Makino K, Mossoba M M, Riesz P. J. Am. Chem. Soc., 1982, 104(12): 3537.
[101]
Kamath V, Prosperetti A, Egolfopoulos F N. J. Acoust. Soc. Am., 1993, 94(1): 248.
[102]
Suslick K S, Doktycz S J, Flint E B. Ultrasonics, 1990, 28(5): 280.
[103]
Luche J L. Ultrasonics, 1992, 30(3): 156.
[104]
Crum L A. J. Acoust. Soc. Am., 1994, 95(1): 559.
[105]
Lepoint T, Mullie F. Ultrason. Sonochemistry, 1994, 1(1): 13.
[106]
Schultes H, Gohr H. Angew. Chem., 1936, 49(27): 420.
[107]
Virtanen A I, Ellfolk N. J. Am. Chem. Soc., 1950, 72(2): 1046.
[108]
Virtanen A I, Ellfolk N, SillÉn L G, Rottenberg M. Acta Chem. Scand., 1950, 4: 93.
[109]
Mead E L, Sutherland R G, Verrall R E. Can. J. Chem., 1976, 54(7): 1114.
[110]
Petrier C, Lamy M F, Francony A, Benahcene A, David B, Renaudin V, Gondrexon N. J. Phys. Chem., 1994, 98(41): 10514.
[111]
Tiehm A. Ultrasound in Environmental Engineering, Technical University of Hamburg-Harburg Reports on Sanitary Engineering, 1999, 25: 167.
[112]
Petrier C, Jiang Y, Francony A, Lemay M F. Ultrasound in Environmental Engineering, Technical University of Hamburg-Harburg Reports on Sanitary Engineering, 1999, 25: 23.
[113]
Supeno, Kruus P. Ultrason. Sonochemistry, 2000, 7(3): 109.
[114]
You H L, Wu Z, Zhang L H, Ying Y R, Liu Y, Fei L F, Chen X X, Jia Y M, Wang Y J, Wang F F, Ju S, Qiao J L, Lam C H, Huang H T. Angew. Chem. Int. Ed., 2019, 58(34): 11779.
[115]
Huang H W, Tu S C, Zeng C, Zhang T R, Reshak A H, Zhang Y H. Angew. Chem. Int. Ed., 2017, 56(39): 11860.
[116]
Yuan S J, Chen J J, Lin Z Q, Li W W, Sheng G P, Yu H Q. Nat. Commun., 2013, 4: 2249.
[117]
Chen S T, Liu D, Peng T Y. Sol. RRL, 2021, 5(2): 2000487.
[118]
Yu Y, Wang C H, Yu Y F, Huang Y M, Liu C B, Lu S Y, Zhang B. J. Mater. Chem. A, 2020, 8(37): 19623.
[119]
Liu Y W, Cheng M, He Z H, Gu B C, Xiao C, Zhou T F, Guo Z P, Liu J D, He H Y, Ye B J, Pan B C, Xie Y. Angew. Chem. Int. Ed., 2019, 58(3): 731.
[120]
Li D, Zhao Y, Miao Y, Zhou C, Zhang L P, Tang J, Zhang T. Adv.Mater., 2022, 12: 2207.
[121]
Mateo D, Cerrillo J L, Durini S, Gascon J. Chem. Soc. Rev., 2021, 50(3): 2173.

Funding

The National Natural Science Foundation of China(21988101)
PDF(8394 KB)

Accesses

Citation

Detail

Sections
Recommended

/