Metal Nanocluter Catalysts for Hydrogenation of Carbon Dioxide to Multicarbon Compounds

Yuan Wang, Yulv Yu, Xin Tan

Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 918-927.

PDF(10879 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10879 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 918-927. DOI: 10.7536/PC221235
Review

Metal Nanocluter Catalysts for Hydrogenation of Carbon Dioxide to Multicarbon Compounds

Author information +
History +

Abstract

Selectively catalytic hydrogenation of CO2 to multi-carbon compounds is of great significance for reducing carbon dioxide emissions and regenerating carbon-containing resources. In this review, we summarize the development of catalytic systems for CO2 hydrogenation to multi-carbon compounds in recent years. The development of metal nanocluster catalysts for CO2 hydrogenation to multi-carbon hydrocarbons or alcohols at low temperatures are introduced, and the chemical basis for regulating C1 and C2+ product selectivity in CO2 hydrogenation is discussed. The progresses in preparing and understanding the structure-function relationship of Pt-Ru bimetallic nanocluster catalysts with the high selectivity for C2+ compounds in the CO2 hydrogenation at low temperatures are discussed. Finally, we elaborate the theory of local charge distribution effect of metal nanocluster catalysts.

Contents

1 Introduction

2 Performance and conversion pathways of CO2hydrogenation over metal nanocluster catalysts at low temperatures

3 Chemical basis for controlling the product selectivity

4 Preparation and properties of a highly selective PtRu bimetallic nanoclusters catalyst

5 Structural characteristics of active sites of metal nanoclusters

6 Conclusion and perspective

Key words

carbon dioxide / hydrogenation / multi-carbon hydrocarbons / multi-carbon alcohols / Pt-Ru bimetallic nanocluster catalysts / local charge distribution

Cite this article

Download Citations
Yuan Wang , Yulv Yu , Xin Tan. Metal Nanocluter Catalysts for Hydrogenation of Carbon Dioxide to Multicarbon Compounds[J]. Progress in Chemistry. 2023, 35(6): 918-927 https://doi.org/10.7536/PC221235

References

[1]
Ra E C, Kim K Y, Kim E H, Lee H, An K, Lee J S. ACS Catal., 2020, 10(19): 11318.
[2]
Ye R P, Ding J, Gong W B, Argyle M D, Zhong Q, Wang Y J, Russell C K, Xu Z H, Russell A G, Li Q H, Fan M H, Yao Y G. Nat. Commun., 2019, 10: 5698.
[3]
Sharma P, Sebastian J, Ghosh S, Creaser D, Olsson L. Catal. Sci. Technol., 2021, 11(5): 1665.
[4]
Liu M, Yi Y H, Wang L, Guo H C, Bogaerts A. Catalysts, 2019, 9(3): 275.
[5]
Zhang Z E, Pan S Y, Li H, Cai J C, Olabi A G, Anthony E J, Manovic V. Renew. Sustain. Energy Rev., 2020, 125: 109799.
[6]
Porosoff M D, Yan B H, Chen J G. Energy Environ. Sci., 2016, 9(1): 62.
[7]
De Luna P, Hahn C, Higgins D, Jaffer S A, Jaramillo T F, Sargent E H. Science, 2019, 364(6438): eaav3506.
[8]
Siudyga T, Kapkowski M, Bartczak P, Zubko M, Szade J, Balin K, Antoniotti S, Polanski J. Green Chem., 2020, 22(15): 5143.
[9]
Wu C Y, Lin L L, Liu J J, Zhang J P, Zhang F, Zhou T, Rui N, Yao S Y, Deng Y C, Yang F, Xu W Q, Luo J, Zhao Y, Yan B H, Wen X D, Rodriguez J A, Ma D. Nat. Commun., 2020, 11: 5767.
[10]
Petala A, Panagiotopoulou P. Appl. Catal. B Environ., 2018, 224: 919.
[11]
Wang J J, Li G N, Li Z L, Tang C Z, Feng Z C, An H Y, Liu H L, Liu T F, Li C. Sci. Adv., 2017, 3: e1701290.
[12]
Porosoff M D, Yang X F, Boscoboinik J A, Chen J G. Angew. Chem. Int. Ed., 2014, 53(26): 6705.
[13]
Xu Y F, Li X Y, Gao J H, Wang J, Ma G Y, Wen X D, Yang Y, Li Y W, Ding M Y. Science, 2021, 371(6529): 610.
[14]
Zhang Y R, Yang X L, Yang X F, Duan H M, Qi H F, Su Y, Liang B L, Tao H B, Liu B, Chen D, Su X, Huang Y Q, Zhang T. Nat. Commun., 2020, 11: 3185.
[15]
Li Y W, Gao W, Peng M, Zhang J B, Sun J L, Xu Y, Hong S, Liu X, Liu X W, Wei M, Zhang B S, Ma D. Nat. Commun., 2020, 11: 61.
[16]
Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Feng Z C, An H Y, Li C. ACS Catal., 2017, 7(12): 8544.
[17]
Wei J, Ge Q J, Yao R W, Wen Z Y, Fang C Y, Guo L S, Xu H Y, Sun J. Nat. Commun., 2017, 8: 15174.
[18]
Gao P, Li S G, Bu X N, Dang S S, Liu Z Y, Wang H, Zhong L S, Qiu M H, Yang C G, Cai J, Wei W, Sun Y H. Nat. Chem., 2017, 9(10): 1019.
[19]
He Z H, Qian Q L, Zhang Z F, Meng Q L, Zhou H C, Jiang Z W, Han B X. Phil. Trans. R. Soc. A., 2015, 373(2057): 20150006.
[20]
He Z H, Cui M, Qian Q L, Zhang J J, Liu H Z, Han B X. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(26): 12654.
[21]
He Z H, Qian Q L, Ma J, Meng Q L, Zhou H C, Song J L, Liu Z M, Han B X. Angew. Chem. Int. Ed., 2016, 55(2): 737.
[22]
Wang L X, Wang L, Zhang J, Liu X L, Wang H, Zhang W, Yang Q, Ma J Y, Dong X, Yoo S J, Kim J G, Meng X J, Xiao F S. Angew. Chem. Int. Ed., 2018, 57(21): 6104.
[23]
Wang Y, Ren J W, Deng K, Gui L L, Tang Y Q. Chem. Mater., 2000, 12(6): 1622.
[24]
Zuo B J, Wang Y, Wang Q L, Zhang J L, Wu N Z, Peng L D, Gui L L, Wang X D, Wang R M, Yu D P. J. Catal., 2004, 222: 493.
[25]
Zhang J L, Wang Y, Ji H, Wei Y G, Wu N Z, Zuo B J, Wang Q L. J. Catal., 2005, 229(1): 114.
[26]
Wang Y, Zhang J L, Wang X D, Ren J W, Zuo B J, Tang Y Q. Top. Catal., 2005, 35(1/2): 35.
[27]
Wang Y, Wang X D. Elsevier, Amsterdam, 2008. 327.
[28]
Yu Y L, Huang J, Wang Y. Sustain. Energy Fuels, 2020, 4(1): 96.
[29]
Huang J, Cai Y C, Yu Y L, Wang Y. Chem. Res. Chin. Univ., 2022, 38(1): 223.
[30]
Yu Y L, Huang J, Wang Y. ChemCatChem, 2018, 10(21): 4863.
[31]
Yu Y L, Cai Y C, Liang M H, Tan X, Huang J, Kotegawa F, Li Z Z, Zhou J H, Jiang H, Harada M, Wang Y. Catal. Sci. Technol., 2022, 12(12): 3786.
[32]
Hu X, Zhang G T, Bu F X, Lei A W. ACS Catal., 2017, 7(2): 1432.
[33]
Li L, Herzon S B. J. Am. Chem. Soc., 2012, 134(42): 17376.
[34]
Yuzawa H, Yoneyama S, Yamamoto A, Aoki M, Otake K, Itoh H, Yoshida H. Catal. Sci. Technol., 2013, 3(7): 1739.
[35]
Franke R, Selent D, Börner A. Chem. Rev., 2012, 112(11): 5675.
[36]
Wang P, Liu H, Yang D. Prog. Chem., 2022, 34(5): 1076.
( 王鹏, 刘欢, 杨妲. 化学进展, 2022, 34(5): 1076.).
[37]
Bhatnagar A K, Gupta A K, Joshi S C, Goyal H B. Patent, 1130/DEL/2002.
[38]
Lin H, Meng Y Y, Li N, Tang Y H, Dong S, Wu Z L, Xu C L, Kazlauskas R, Chen H G. Angew. Chem. Int. Ed., 2022, 61(32): e202206472.
[39]
Xu D, Wang Y Q, Ding M Y, Hong X L, Liu G L, Tsang S C E. Chem, 2021, 7(4): 849.
[40]
Liu Y, Chen L F, Cheng T, Guo H Y, Sun B, Wang Y. J. Power Sources, 2018, 395: 66.
[41]
Yan M Y, Wu T, Chen L F, Yu Y L, Liu B, Wang Y, Chen W X, Liu Y, Lian C, Li Y D. ChemCatChem, 2018, 10(11): 2433.
[42]
Speder J, Altmann L, Roefzaad M, Bäumer M, Kirkensgaard J J K, Mortensen K, Arenz M. Phys. Chem. Chem. Phys., 2013, 15(10): 3602.
[43]
Quinson J, Inaba M, Neumann S, Swane A A, Bucher J, Kunz S, Arenz M, ACS Catal. 2018, 8: 6627.
[44]
Cheng T, Tan X, Chen L F, Zhao X S, Kotegawa F, Huang J, Liu Y, Jiang H, Harada M, Wang Y. Energy Technol., 2022, 10(11): 2200680.
[45]
Wang Y, Hao M G. Nanomaterials, 2023, 13(3): 565.
[46]
Liang M H, Wang X D, Liu H Q, Liu H C, Wang Y. J. Catal., 2008, 255(2): 335.
[47]
Wang Y, Ren P J, Hu J T, Tu Y C, Gong Z M, Cui Y, Deng D H. Nat. Commun., 2021, 12: 5814.
[48]
Yu J, Chen W M, Li K X, Zhang C H, Li M Z, He F, Jiang L, Li Y L, Song W G, Cao C Y. Angew. Chem. Int. Ed., 2022, 61(34): e202207255.
[49]
Cheng Y L, Zhao X S, Yu Y L, Chen L F, Cheng T, Huang J, Liu Y, Harada M, Ishihara A, Wang Y. J. Power Sources, 2020, 446: 227332.

Funding

The National Natural Science Foundation of China(91961103)
The National Natural Science Foundation of China(21821004)
The Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202001)
The National Key Research and Development Program(2021YFA1501000)
PDF(10879 KB)

Accesses

Citation

Detail

Sections
Recommended

/