Design, Synthesis and Application of Magnetic Nanoparticle Catalytic Materials Based on Multientate Palladium Compounds

Yunhua Ma, Han Shao, Tenglong Lin, Qinyue Deng

Prog Chem ›› 2023, Vol. 35 ›› Issue (9) : 1369-1388.

PDF(45467 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(45467 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (9) : 1369-1388. DOI: 10.7536/PC230115
Review

Design, Synthesis and Application of Magnetic Nanoparticle Catalytic Materials Based on Multientate Palladium Compounds

Author information +
History +

Abstract

Catalyst loading is one of the effective strategies for green catalysis. Palladium (Pd) catalysts supported by magnetic nanoparticles (MNPs) have been widely studied and used in organic synthesis due to their good dispersibility, high catalytic activity, rapid separation under the action of an external magnetic field, and efficient recovery. The MNPs-supported polydentate Pd compound catalyst (MNPs@L-Pd) shows better catalytic activity and stability than the MNPs-supported Pd nanoparticle catalyst (MNPs@PdNP). This is mainly because the introduction of the modified ligand in MNPs@L-Pd can regulate the electronic effect and steric hindrance of the catalyst metal center to achieve the regulation of its activity, on the other hand, it makes the stable chemical bond between the catalyst metal center and the magnetic material to achieve the regulation of stability. This paper mainly focuses on MNPs@L-Pd, the preparation of MNPs@L-Pd based on different ligands and coordination methods and its application in C-X(Cl, Br, I) activation reaction in the past 10 years are reviewed from the aspects of catalyst stability and activity, and the prospect of these reactions are also presented.

Contents

1 Introduction

2 Palladium-catalyzed system based on bidentate coordination mode

2.1 N-Pd-N coordination bond catalytic system

2.2 O-Pd-N coordination bond catalytic system

2.3 P-Pd-P coordination bond catalytic system

2.4 S-Pd-N coordination bond catalytic system

2.5 Se-Pd-N coordination bond catalytic system

3 Palladium-catalyzed system based on tridentate coordination mode

4 Palladium-catalyzed system based on tetradecentate coordination mode

5 Palladium-catalyzed system based on multidentate coordination mode

6 Palladium-catalyzed system based on Pd-C covalent bonds

7 Conclusion and outlook

Key words

magnetic nanoparticle / palladium complex / supported catalyst / organic synthesis reaction

Cite this article

Download Citations
Yunhua Ma , Han Shao , Tenglong Lin , et al. Design, Synthesis and Application of Magnetic Nanoparticle Catalytic Materials Based on Multientate Palladium Compounds[J]. Progress in Chemistry. 2023, 35(9): 1369-1388 https://doi.org/10.7536/PC230115

References

[1]
Zhao G, Xu X J. Nanoscale, 2021, 13 (24): 10649.
[2]
Vogel P, Lam Y H, Simon A, Houk K N. Catalysts, 2016, 6 (9): 128.
[3]
Gabriele B. Molecules, 2022, 27 (4): 1227.
[4]
Niu B, Yang K, Lawrence B, Ge H. ChemSusChem, 2019, 12 (13): 2955.
[5]
Wang Q J, Su Y J, Li L X, Huang H M. Chem.Soc.Rev., 2016, 45 (5): 1257.
[6]
Xia Y, Qiu D, Wang J B. Chem.Rev., 2017, 117 (23): 13810.
[7]
Sain Shalu, Jain S, Srivastava M, Vishwakarma R, Dwivedi J. Curr. Org. Synth., 2019, 16 (8): 1105.
[8]
Wu X F, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed., 2010, 49 (48): 9047.
[9]
Beller M, Zapf A, Mägerlein W. Chem. Eng. Technol., 2001, 24 (6): 575.
[10]
Dobrounig P, Trobe M, Breinbauer R. Monatsh. Chem., 2017, 148 (1): 3.
[11]
Cole-Hamilton D J, Tooze R P. Catalyst Separation, Recovery and Recycling. New York: Springer, 2006.
[12]
Mallesham B, Raikwar D, Shee D. Advanced Functional Solid Catalysts for Biomass Valorization. Eds.: Mustansar H C, Sudarsanam P. Amsterdam: Elsevier, 2020.1.
[13]
Liu J, Zhu Q R, Du J, Zhang X L. Chin. J. Org. Chem., 2015, 35(1): 15.
( (刘杰, 朱庆仁, 杜娟, 张袖丽. 有机化学, 2015, 35(1): 15.)
[14]
Franzen R G. Top. Catal., 2016, 59 (13): 1143.
[15]
Qiao N N. Mater Dissertation of Guangdong Pharmaceutical University, 2019.
(乔妮娜. 广东药科大学硕士论文, 2019.).
[16]
Yan T L, Zhang Y, Zhu X Q, Zhang X H, Liu Z T, Dai J T, Xu G D. Journal of Yangzhou University Natural Science Edition, 2022, 25(1): 19.
( 颜廷良, 张玉, 朱啸庆, 张雪华, 刘总堂, 戴兢陶, 徐国栋. 扬州大学学报(自然科学版), 2022, 25(1): 19.)
[17]
Mu J L, Hu T W, Shan S Y, Jiang L H, Wang Y M, Jia Q M. Polymeric Materials Science and Engineering, 2013, 29(7): 179.
母佳利, 胡庭维, 陕绍云, 蒋利红, 王亚明, 贾庆明. 高分子材料科学与工程, 2013, 29(7): 179.).
[18]
Wang H B. Mater Dissertation of Lanzhou University, 2013.
(王海博. 兰州大学硕士论文, 2013.).
[19]
Bui N T, Dang T B, Le H V, Phan N T S. Chin. J. Catal., 2011, 32 (11/12): 1667.
[20]
Beygzadeh M, Alizadeh A, Khodaei M M, Kordestani D. Catal. Commun., 2013, 32: 86.
[21]
Yang P B, Ma R, Bian F L. ChemCatChem, 2016, 8 (24): 3746.
[22]
Nehlig E, Waggeh B, Millot N, Lalatonne Y, Motte L, GuÉnin E. Dalton Trans., 2015, 44 (2): 501.
[23]
Bodaghifard M A. J. Organomet. Chem., 2019, 886: 57.
[24]
Aryanasab F, Shabanian M, Laoutid F, Vahabi H. Appl. Organomet. Chem., 2021, 35 (5): e6198.
[25]
Dehbanipour Z, Zarnegaryan A. Inorg. Chem. Commun., 2022, 141.
[26]
Xu X Q, Wang W Q, Lu L, Zhang J Z, Luo J. Catal. Lett., 2022, 152 (10): 3031.
[27]
Cai Y, Yuan H L, Gao Q, Wu L L, Xue L J, Feng N J, Sun Y. Catal. Lett., 2023, 153(2): 460.
[28]
Bauer R E, Grimsdale A C, Müllen K. Functional Molecular Nanostructures. Ed.: Schlüter A D. Berlin, Heidelberg: Springer, 2005. 253.
[29]
Ma R, Yang P B, Bian F L. New J. Chem., 2018, 42 (6): 4748.
[30]
Sorokina S A, Kuchkina N V, Lawson B P, Krasnova I Y, Nemygina N A, Nikoshvili L Z, Talanova V N, Stein B D, Pink M, Morgan D G, Sulman E M, Bronstein L M, Shifrina Z B. Appl. Surf. Sci., 2019, 488: 865.
[31]
Sheikh S, Nasseri M A, Chahkandi M, Reiser O, Allahresani A. RSC Adv., 2022, 12 (15): 8833.
[32]
Yang J H, Wang D F, Liu W D, Zhang X, Bian F L, Yu W. Green Chem., 2013, 15 (12): 3429.
[33]
Wang D F, Liu W D, Bian F L, Yu W. New J. Chem., 2015, 39 (3): 2052.
[34]
Barazandehdoust M, Mamaghani M, Kefayati H. React. Kinet., Mech. Catal., 2020, 129 (2): 1007.
[35]
Khoobi MM, Ma?mani L, Rezazadeh F, Zareie Z, Foroumadi A, Ramazani A, Shafiee A. J. Mol. Catal. A: Chem., 2012, 359: 74.
[36]
Ma?mani L, Sheykhan M, Heydari A, Faraji M, Yamini Y. Appl. Catal., A, 2010, 377 (1): 64.
[37]
Mohammadnia M, Poormirzaei N. Nanoscale Adv., 2021, 3 (7): 1917.
[38]
Zarnaghash N, Panahi F, Khalafi-Nezhad A. J. Iran. Chem. Soc., 2015, 12 (11): 2057.
[39]
Sobhani S, Habibollahi A, Zeraatkar Z. Org. Process Res. Dev., 2019, 23 (7): 1321.
[40]
Rangraz Y, Nemati F, Elhampour A. New J. Chem., 2018, 42 (18): 15361.
[41]
Rangraz Y, Nemati F, Elhampour A. J. Phys. Chem. Solids, 2020, 138: 109251.
[42]
Sobhani S, Zeraatkar Z, Zarifi F. New J. Chem., 2015, 39 (9): 7076.
[43]
Esmaeilpour M, Sardarian A R, Javidi J. J. Organomet. Chem., 2014, 749: 233.
[44]
Esmaeilpour M, Javidi J. J. Chin. Chem. Soc., 2015, 62 (7): 614.
[45]
Sardarian A R, Kazemnejadi M, Esmaeilpour M. Dalton Trans., 2019, 48 (9): 3132.
[46]
Tashrifi Z, Bahadorikhalili S, Lijan H, Ansari S, Hamedifar H, Mahdavi M. New J. Chem., 2019, 43 (23): 8930.
[47]
Liao Q L, Tannenbaum R, Wang Z L. J. Phys. Chem. B, 2006, 110 (29): 14262.
[48]
Qiu J P, Yu L, Ni J G, Fei Z X, Li W D, Sadeghzadeh S M. New J. Chem., 2020, 44 (4): 1269.
[49]
Rahman M, L Sarjadi M S, Akhter M S, Hannan J J, Sarkar S M. Arabian J. Chem., 2022, 15 (8): 103983.
[50]
Ren F F, Li S, Zheng W Q, Song Q Y, Jia W H, Nan Y Q, Jia H J, Liu J, Bao J J, Li Y X. Colloids Surf., A, 2022, 642: 128611.
[51]
Esmaeilpour M, Javidi J, Dodeji F N, Hassannezhad H. J. Iran. Chem. Soc., 2014, 11 (6): 1703.
[52]
Bahadorikhalili S, Ma?mani L, Mahdavi H, Shafiee A. RSC Adv., 2015, 5 (87): 71297.
[53]
Martinez-Olid F, AndrÉs R, Flores J C, GÓmez-Sal P, HeuzÉ K, Vellutini L. Dalton Trans., 2016, 45 (29): 11633.
[54]
Kaur A, Singh V. Chem. Lett., 2016, 45 (1): 83.
[55]
Deng Q Y, Shen Y J, Zhu H B, Tu T. Chem. Commun. (Camb), 2017, 53 (97): 13063.
[56]
Vishal K, Fahlman B D, Sasidhar B S, Patil S A, Patil S A. Catal. Lett., 2017, 147 (4): 900.
[57]
Kandathil V, Fahlman B D, Sasidhar B S, Patil S A, Patil S A. New J. Chem., 2017, 41 (17): 9531.
[58]
Rafiee F, Mehdizadeh N. Catal. Lett., 2018, 148 (5): 1345.
[59]
Rafiee F, Hosseini S A. Appl. Organomet. Chem., 2018, 32 (11): e4519.
[60]
Esmaeilpour M, Sardarian A R, Firouzabadi H. J. Organomet. Chem., 2018, 873: 22.
[61]
Tahmasbi B, Ghorbani-Choghamarani A. New J. Chem., 2019, 43 (36): 14485.
[62]
Ghorbani-Choghamarani A, Tahmasbi B, Hudson R H E, Heidari A. Micropor. Mesopor. Mater., 2019, 284: 366.
[63]
Zuo B, Shao H, Zheng Y, Ma Y H, Li W F, Huang M X, Deng Q Y. Asian J. Org. Chem., 2022, 11 (5): e202200018.
[64]
Lakhdar S. Synthesis, 2020, 52 (22): 3492.
[65]
Liu Y Y, Liu J, Lu L Q, Xiao W J. Top Curr. Chem. (Cham), 2019, 377 (6): 37.
[66]
Zhou W J, Cao G M, Zhang Z P, Yu D G. Chem. Lett., 2019, 48 (3): 181.
[67]
Sauermann N, Meyer T H, Qiu Y A, Ackermann L. ACS Catal., 2018, 8 (8):7086.
[68]
Luscombe C K, Yadav P, Velmurugan N. Synthesis, 2023, 55(01): 1.

Funding

The Shanghai Young Teachers Training and Support Program(slg20035)
PDF(45467 KB)

Accesses

Citation

Detail

Sections
Recommended

/