Application of Pyrite and Its Modified Composite in Water Pollution Treatment

Yanxiao Chi, Yuxuan Yang, Kunlun Yang, Xianrong Meng, Wei Xu, Hengfeng Miao

Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1544-1558.

PDF(9132 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9132 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1544-1558. DOI: 10.7536/PC230215
Review

Application of Pyrite and Its Modified Composite in Water Pollution Treatment

Author information +
History +

Abstract

Due to its strong surface activity, precipitation adsorption, redox and relatively excellent photocatalytic properties, pyrite has been widely used to treat heavy metals, organic pollutants and various inorganic salts in the polluted water. However, some inherent defects of pyrite, such as small specific surface area, high susceptibility to agglomeration, etc., limit its practical applications. Appropriate modification of pyrite via morphological adjustment, elemental doping, and material loading can improve the dispersion performance of particle size, expose more functional groups and increase electron transport rate to further modulate the related properties and enhance the wastewater treatment capacity of pyrite, In this article, we firstly introduce the basic information, the application and the mechanism of pyrite in wastewater treatment, and then describe the typical modification methods of pyrite and their corresponding strengthening mechanisms for treating wastewater. This article will provide a systematic introduction and outlook for the development of pyrite-based composite materials in the field of environmental treatment.

Contents

1 Introduction

2 Adsorption of pyrite

2.1 Application and mechanism of pyrite adsorption capacity

2.2 Improvement of pyrite materials and enhancement of adsorption capacity

3 Oxidation of pyrite

3.1 Application and mechanism of pyrite oxidation ability

3.2 Improvement of pyrite materials and enhancement of oxidation capacity

4 Reduction of pyrite

4.1 Application and mechanism of pyrite reduction ability

4.2 Improvement of pyrite materials and enhancement of reduction capacity

5 Conclusion and outlook

Key words

pyrite / modification / functional regulation / water pollution treatment

Cite this article

Download Citations
Yanxiao Chi , Yuxuan Yang , Kunlun Yang , et al . Application of Pyrite and Its Modified Composite in Water Pollution Treatment[J]. Progress in Chemistry. 2023, 35(10): 1544-1558 https://doi.org/10.7536/PC230215

References

[1]
Ji H Y, Peng D Z, Fan C T, Zhao K K, Gu Y, Liang Y Q. Urban Clim., 2022, 43: 101148.
[2]
Luo S X, Chen H S, Mou Q S, Wu Y H. Multipurpose Utilization of Mineral Resources, 2020, (05): 27.
(罗宿星, 陈华仕, 牟青松, 伍远辉. 矿产综合利用, 2020, (05): 27.).
[3]
Han D S, Song J K, Batchelor B, Abdel-Wahab A. J. Colloid Interface Sci., 2013, 392: 311.
[4]
Song B, Zeng Z T, Almatrafi E, Shen M C, Xiong W P, Zhou C Y, Wang W J, Zeng G M, Gong J L. Water Res., 2022, 211: 118048.
[5]
Li Y K, Qi X J, Li G H, Wang H. Chem. Eng. J., 2021, 410: 128303.
[6]
Guo Q, Tang G B, Zhu W J, Luo Y M, Gao X Y. J. Environ. Sci., 2021, 101: 351.
[7]
Li Z F. Doctoral Dissertation of Shaoxing University, 2017.
(栗占锋. 绍兴文理学院博士论文, 2017.).
[8]
Wang Y. Doctoral Dissertation of Jilin University, 2022.
(王遥. 吉林大学博士论文, 2022).
[9]
Khabbaz M, Entezari M H. J. Environ. Manag., 2017, 187: 416.
[10]
Zheng X F, Pan X, Nie Z Y, Yang Y, Liu L Z, Yang H Y, Xia J L. Minerals, 2018, 8(9): 366.
[11]
Mashayekh-Salehi A, Akbarmojeni K, Roudbari A, Peter van der Hoek J, Nabizadeh R, Dehghani M H, Yaghmaeian K. J. Clean. Prod., 2021, 291: 125235.
[12]
Jiang K, Liu J, Wang Y, Zhang D J, Han Y X. Appl. Surf. Sci., 2023, 610: 155476.
[13]
Zhang X F, Fan H, Yuan J, Tian J, Wang Y F, Lu C L, Han H S, Sun W. J. Environ. Chem. Eng., 2022, 10(6): 108856.
[14]
Shi S, Wu Q Y, Li X Z, Huang M H. Environmental Science, 2020, 41(09): 4124.
(石松, 吴乾元, 李新正, 黄满红. 环境科学, 2020, 41(09): 4124.).
[15]
Yang Y J, Liu J, Liu F, Wang Z, Miao S. J. Hazard. Mater., 2018, 344: 104.
[16]
Borah D, Senapati K. Fuel, 2006, 85(12/13): 1929.
[17]
He Y. Doctoral Dissertation of University of South China, 2019.
(何叶. 南华大学博士论文, 2019.).
[18]
Bulut G, Yenial Ü, Emiroğlu E, Ali Sirkeci A. J. Clean. Prod., 2014, 84: 526.
[19]
Bostick B C, Fendorf S. Geochimica Cosmochimica Acta, 2003, 67(5): 909.
[20]
He X Y, Min X B, Peng T Y, Ke Y, Zhao F P, Sillanpää M, Wang Y Y. Environ. Sci. Pollut. Res., 2020, 27(14): 16484.
[21]
Hu G L. Doctoral Dissertation of Central China Normal University, 2022.
(胡国良. 华中师范大学博士论文, 2022.).
[22]
Gan M, Li J Y, Sun S J, Cao Y Y, Zheng Z H, Zhu J Y, Liu X X, Wang J, Qiu G Z. Chem. Eng. J., 2018, 341: 27.
[23]
Liu Y L, Wu S H, Liang Z S, Liu Y, Ren H T, Jia S Y, Han X. Chem. Geol., 2019, 522: 223.
[24]
Luo S X, Nie X, Yang M Z, Fu Y H, Zeng P, Wan Q. Minerals, 2018, 8(10): 428.
[25]
Gao R Q, Hu P W, Dai Y N, Zhang Y, Liu L, Yang W Z. Appl. Surf. Sci., 2022, 602: 154353.
[26]
Wang J, Chen T H, Li P, Xie J J, Ma B D, Cao Y G. Acta Mineralogica Sinica, 2012, 32(02): 238.
(王菊, 陈天虎, 李平, 谢晶晶, 马炳德, 曹光跃. 矿物学报, 2012, 32(02): 238.).
[27]
Abdullah N H, Xian O J, Yi C Z, Yuan N S, Yaacob M S S, Salim N a A, Ahmad N, Lazim Z M, Nuid M, Abdullah F. Biointerface Research in Applied Chemistry, 2023, 13(1), 56.
[28]
Zhang J, Li R H, Li J, Liu B. Chinese Journal of Environmental Engineering, 2013, 7(10): 3856.
(张菁, 李睿华, 李杰, 刘波. 环境工程学报, 2013, 7(10): 3856.).
[29]
Pang Y M, Wang J L. Bioresour. Technol., 2020, 318: 124105.
[30]
TorrentÓ C, Urmeneta J, Otero N, Soler A, Viñas M, Cama J. Chem. Geol., 2011, 287(1/2): 90.
[31]
Wang D, Liu H F, Qian T W. Environmental Pollution & Control, 2014, 36(03): 30.
(王丹, 刘宏芳, 钱天伟. 环境污染与防治, 2014, 36(03): 30.).
[32]
Bostick B C, Fendorf S, Helz G R. Environ. Sci. Technol., 2003, 37(2): 285.
[33]
Pu J Y, Feng C P, Liu Y, Li R, Kong Z, Chen N, Tong S, Hao C B, Liu Y. Bioresour. Technol., 2014, 173: 117.
[34]
Tong S, Stocks J L, Rodriguez-Gonzalez L C, Feng C P, Ergas S J. Bioresour. Technol., 2017, 244: 296.
[35]
Li R H, Yuan Y L, Zhan X M, Liu B. Environ. Sci. Pollut. Res., 2014, 21(2): 972.
[36]
Galvez-Martinez S, Mateo-Marti E. Life, 2018, 8(4): 50.
[37]
Fang Y F, Li X Y, Zhou W, Wang X W, Cai K, Jia M K, Huang Y P. Environ. Chem., 2014, 33(11): 1941.
(方艳芬, 李新玉, 周薇, 王小维, 蔡宽, 贾漫珂, 黄应平. 环境化学, 2014, 33(11): 1941.).
[38]
Cai K, Xiong S W, Zhang X X, Li R P, Huang Y P. Acta Petrologica et Mineralogica, 2014, 33(02): 370.
(蔡宽, 熊世威, 张欣欣, 李瑞萍, 黄应平. 岩石矿物学杂志, 2014, 33(02): 370.).
[39]
Hu J S, Li R H, Sun Q Q, Liu Z, Zhang X M. Chinese Journal of Environmental Engineering, 2015, 9(11): 5463.
(胡俊松, 李睿华, 孙茜茜, 刘卓, 张小梅. 环境工程学报, 2015, 9(11): 5463.).
[40]
Wang Z H, Xie X H, Xiao S M, Liu J S. Hydrometallurgy, 2010, 102(1/4): 87.
[41]
Han G, Wen S M, Wang H, Feng Q C. Sep. Purif. Technol., 2020, 240: 116650.
[42]
Pourghahramani P, Akhgar B N. J. Ind. Eng. Chem., 2015, 25: 131.
[43]
He X Y, Min X B, Peng T Y, Ke Y, Zhao F P, Wang Y Y, Sillanpää M. J. Chem. Eng. Data, 2019, 64(12): 5910.
[44]
Huang S J. Doctoral Dissertation of Guangdong University of Technology, 2017.
(黄树杰. 广东工业大学博士论文, 2017.).
[45]
Qi L Q, Wang X, Wang W, Li J X, Huang Y. Environ. Sci. Pollut. Res., 2022, 29(26): 39228.
[46]
Cui J Y. Doctoral Dissertation of Taiyuan University of Science and Technology, 2016.
(崔晋艳. 太原科技大学博士论文, 2016.).
[47]
Zhang W, Huang F Y, Hu W W. Environ. Sci. Pollut. Res., 2020, 27(29): 36816.
[48]
Kong Z, Song Y Q, Shao Z Y, Chai H X. Water Res., 2021, 206: 117737.
[49]
Li H B, Li Y F, Guo J B, Song Y Y, Hou Y N, Lu C C, Han Y, Shen X F, Liu B W. Environ. Res., 2021, 194: 110708.
[50]
Lian J J, Xu S G, Zhang Y M, Han C W. Water Sci. Technol., 2013, 67(8): 1859.
[51]
Fornaro T, Boosman A, Brucato J R, ten Kate I L, Siljeström S, Poggiali G, Steele A, Hazen R M. Icarus, 2018, 313: 38.
[52]
Galvez-Martinez S, Escamilla-Roa E, Zorzano M P, Mateo-Marti E. Appl. Surf. Sci., 2020, 530: 147182.
[53]
Li Y Y, Liang J L, He X, Zhang L, Liu Y S. J. Hazard. Mater., 2016, 320: 216.
[54]
Gadisa B T, Appiah-Ntiamoah R, Kim H. Environ. Sci. Pollut. Res., 2019, 26(3): 2734.
[55]
Zhang P, Yuan S H. Geochimica Cosmochimica Acta, 2017, 218: 153.
[56]
Liu L H, Guo D M, Ning Z P, Liu C S, Qiu G H. Water Res., 2021, 203: 117545.
[57]
Fu F L, Wang Q. J. Environ. Manag., 2011, 92(3): 407.
[58]
Vidu R, Matei E, Predescu A M, Alhalaili B, Pantilimon C, Tarcea C, Predescu C. Toxics, 2020, 8(4): 101.
[59]
Kong L H, Hu X Y, He M C. Environ. Sci. Technol., 2015, 49(6): 3499.
[60]
Yan L, Chan T S, Jing C Y. Environ. Pollut., 2020, 262: 114309.
[61]
Sun F L, Dempsey B A, Osseo-Asare K A. J. Colloid Interface Sci., 2012, 388(1): 170.
[62]
Zhao L H, Chen Y F, Liu Y X, Luo C, Wu D L. Chemosphere, 2017, 188: 557.
[63]
Yu F K, Wang Y, Ma H R, Zhou M H. Sep. Purif. Technol., 2020, 248: 117022.
[64]
Ammar S, Oturan M A, Labiadh L, Guersalli A, Abdelhedi R, Oturan N, Brillas E. Water Res., 2015, 74: 77.
[65]
Barhoumi N, Oturan N, Olvera-Vargas H, Brillas E, Gadri A, Ammar S, Oturan M A. Water Res., 2016, 94: 52.
[66]
Rahimi F, van der Hoek J P, Royer S, Javid A, Mashayekh-Salehi A, Jafari Sani M. J. Water Process. Eng., 2021, 40: 101808.
[67]
Nichela D A, Donadelli J A, Caram B F, Haddou M, Rodriguez Nieto F J, Oliveros E, García Einschlag F S. Appl. Catal. B Environ., 2015, 170/171: 312.
[68]
Zhang P, Huang W, Ji Z, Zhou C G, Yuan S H. Geochimica Cosmochimica Acta, 2018, 238: 394.
[69]
Zhou Y, Wang X L, Zhu C Y, Dionysiou D D, Zhao G C, Fang G D, Zhou D M. Water Res., 2018, 142: 208.
[70]
Wu X J, Yang J M, Liu S Y, He Z W, Wang Y Y, Qin W X, Si Y B. Chemosphere, 2022, 309: 136793.
[71]
Crundwell F K. Miner. Eng., 2021, 161: 106728.
[72]
Guo D M. Doctoral Dissertation of Huazhong Agricultural University, 2021.
(郭迪满. 华中农业大学博士论文, 2021.).
[73]
Wang W T, Zhang C J, Shan J, He M C. Chem. Geol., 2020, 552: 119790.
[74]
Fu D, Kurniawan T A, Lin L, Li Y Q, Avtar R, Dzarfan Othman M H, Li F. J. Environ. Manag., 2021, 286: 112246.
[75]
Du M M, Zhang Y Q, Hussain I, Du X D, Huang S B, Wen W. Chemosphere, 2019, 233: 744.
[76]
Lee D W, Ahn Y, Cho D W, Basak B, Jeon B H, Choi J. Environ. Pollut., 2023, 317: 120681.
[77]
Fathinia S, Fathinia M, Rahmani A A, Khataee A. Appl. Surf. Sci., 2015, 327: 190.
[78]
Gong C, Zhai J L, Wang X, Zhu W J, Yang D L, Luo Y M, Gao X Y. Chemosphere, 2022, 307: 136199.
[79]
Xu C X, Kong Y L, Zhang W J, Yang M D, Wang K, Chang L, Chen W, Huang G B, Zhang J. Sep. Purif. Technol., 2022, 303: 122266.
[80]
Zhao B C, Gong J L, Song B, Sang F, Zhou C Y, Zhang C, Cao W C, Niu Q Y, Chen Z P. Chemosphere, 2022, 308: 136427.
[81]
Luo K, Pang Y, Wang D B, Li X, Wang L P, Lei M, Huang Q, Yang Q. J. Environ. Sci., 2021, 108: 201.
[82]
Shi X G, Ma K, Gu Y W, Zhang W Q, Sun J. Sep. Purif. Technol., 2022, 292: 121060.
[83]
Rashid J, Saleem S, Awan S U, Iqbal A, Kumar R, Barakat M A, Arshad M, Zaheer M, Rafique M, Awad M. RSC Adv., 2018, 8(22): 11935.
[84]
Deng X H, Yang Y, Mei Y Q, Li J Q, Guo C L, Yao T J, Guo Y M, Xin B F, Wu J. J. Alloys Compd., 2022, 901: 163437.
[85]
Subhiksha V, Alatar A A, Okla M K, Alaraidh I A, Mohebaldin A, Aufy M, Abdel-Maksoud M A, Raju L L, Thomas A M, Khan S S. Chemosphere, 2022, 303: 135177.
[86]
Zhang F L, Liu J X, Yue H R, Cheng G J, Xue X X. Vacuum, 2021, 192: 110433.
[87]
Guo X J, Jia J L, Xu Y N, Meng Q, Zha F, Tang X H, Tian H F. Appl. Surf. Sci., 2021, 556: 149786.
[88]
Raju A G, Rao B D, Himabindu G, Botsa S M. J. Mater. Res. Technol., 2022, 17: 2648.
[89]
Wang H H, Lei W, Li X J, Huang Z, Jia Q L, Zhang H J. Progress in Chemistry, 2021, 32(12): 1990.
(王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 化学进展, 2021, 32(12): 1990.).
[90]
Lin Y T, Huang C P. Sep. Purif. Technol., 2008, 63(1): 191.
[91]
Nie X, Li G Y, Wang Y, Luo Y M, Song L, Yang S G, Wan Q. J. Hazard. Mater., 2022, 424: 127504.
[92]
Yu H Q, Yu T, Zeng K. Front. Environ. Sci., 2022, 10: 955519.
[93]
Kang M L, Chen F R, Wu S J, Yang Y Q, Bruggeman C, Charlet L. Environ. Sci. Technol., 2011, 45(7): 2704.
[94]
Deen S G, Hendry M J, Lee Barbour S, Das S, Essilfie-Dughan J. Geochemistry, 2022, 82(1): 125863.
[95]
Liu H F, Qian T W, Zhang M G. Spectroscopy and Spectral Analysis, 2015, 35(02): 543.
(刘宏芳, 钱天伟, 张敏刚. 光谱学与光谱分析, 2015, 35(02): 543.).
[96]
Li P. Doctoral Dissertation of Hefei University of Technology, 2016.
(李平. 合肥工业大学博士论文, 2016.).
[97]
Zhang Y L, Zhang K, Dai C M, Zhou X F. Chem. Eng. Sci., 2014, 111: 135.
[98]
Kriegman-King M R, Reinhard M. Environ. Sci. Technol., 1994, 28(4): 692.
[99]
Zhang Y Q, Tran H P, Hussain I, Zhong Y Q, Huang S B. Chem. Eng. J., 2015, 279: 396.
[100]
Rahim H U, Qaswar M, Wang M L, Jing X D, Cai X Y. J. Environ. Chem. Eng., 2021, 9(6): 106696.
[101]
Cheng J, Yuan J, Li S Y, Yang X L, Lu Z J, Xu J M, He Y. Crit. Rev. Environ. Sci. Technol., 2022, 52(14): 2582.
[102]
Huang H J, Chen J Y, Wang X F. Modern Mining, 2021, 37(04): 176.
(黄海军, 陈金毅, 王小凤. 现代矿业, 2021, 37(04): 176.).
[103]
Tang J C, Zhao B B, Lyu H H, Li D. J. Hazard. Mater., 2021, 413: 125415.
[104]
Liu C R, Xiao H, Liu Y, Li D J, He H, Huang X H, Shen W T, Yan Z Y, Dang Z, Zhu R L. J. Colloid Interface Sci., 2023, 629: 847.
[105]
Guo Y D, Li C X, Gong Z H, Guo Y P, Wang X G, Gao B, Qin W J, Wang G H. J. Hazard. Mater., 2020, 397: 122580.
[106]
Yang W C, Li X M, Xi D D, Li Q, Yang Z H, Min X B, Lin Z, Liao Q. Chemosphere, 2021, 281: 130957.
[107]
Zhao B B, Tang J C, Lyu H H, Liu F, Wang L. J. Environ. Chem. Eng., 2022, 10(2): 107181.
[108]
Lin Y T, Li J F, Chen S Y, Zhou H D, Shu Y M, Tang L Q, Long Q, Zhang P C, Huang Y. Sep. Purif. Technol., 2023, 308: 122764.
[109]
Liu H F, Qian T W, Zhang M G. Spectroscopy and Spectral Analysis, 2015, 35(2): 543.
[110]
Charlet L, Kang M L, Bardelli F, Kirsch R, GÉhin A, Grenèche J M, Chen F R. Environ. Sci. Technol., 2012, 46(9): 4869.
[111]
Ri C, Li F X, Mun H, Liu L N, Tang J C. Chem. Eng. J., 2023, 452: 139086.

Funding

National Natural Science Foundation of China(22206061)
Fundamental Research Funds for the Central Universities(JUSRP122022)
PDF(9132 KB)

Accesses

Citation

Detail

Sections
Recommended

/