Gases under High Pressure and Their Associated Chemical Reactions

Peng Liu, Yong Zhou, Liangyu Liu, Yang Chen, Xiaoyang Liu

Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 983-996.

PDF(9895 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9895 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 983-996. DOI: 10.7536/PC230221
Review

Gases under High Pressure and Their Associated Chemical Reactions

Author information +
History +

Abstract

The study of gases under high pressure is a very important research direction, which is of great significance to many disciplines. This paper introduces the special physical and chemical properties of gases and the chemical reactions they participate in under high pressure conditions. Gases behave very differently at high pressure than they do under ambient conditions. At extreme pressures, gases undergo structural transformations, change their electromagnetic properties, and exhibit interesting phase transitions. The chemical reactions of the gases also change and new reaction paths occur. Understanding the effect of high pressure on gas reactions is critical to improving our understanding of the synthesis of new compounds. In addition, the paper also introduces the practical significance of gas under high pressure. The unique properties of gas under high pressure make it widely used in other disciplines. This paper especially introduces the application of gas under high pressure in high-temperature superconductors, extremely high-energy materials and planetary science. In conclusion, the study of gases at high pressure provides valuable insights into the fundamental properties of matter, and understanding these phenomena is critical to advancing disciplines such as condensed matter physics, materials science, and chemistry. Finally, the prospect of further research on gases under high pressure is given.

Contents

1 Introduction

2 Simple gas under high pressure

2.1 Argon and hydrogen under high pressure

2.2 Metallization of xenon under high pressure

2.3 Unique structure of Xe-H2compounds under high pressure

2.4 Chemical reaction of xenon and fluorine under high pressure

3 Gases with superconductivity under high pressure

3.1 Overview of superconductivity

3.2 high-temperature superconductors predicted at High pressure

3.3 high temperature superconductivity of lanthanide polyhydrides under High pressure

3.4 Second group of lanthanide polyhydride superconductors under high pressure

4 Extreme energy materials

4.1 Nitrogen under high pressure

4.2 Hydrogen under high pressure

5 Applications of planetary science

5.1 Applications of helium in Planetary Science

5.2 Missing xenon paradox

6 Conclusion and outlook

Key words

gas / high-pressure / metallization / superconductivity / extreme energy materials / planetary science

Cite this article

Download Citations
Peng Liu , Yong Zhou , Liangyu Liu , et al . Gases under High Pressure and Their Associated Chemical Reactions[J]. Progress in Chemistry. 2023, 35(6): 983-996 https://doi.org/10.7536/PC230221

References

[1]
Mao H K, Chen X J, Ding Y, Li B, Wang L. Rev. Mod. Phys., 2018, 90(1): 015007.
[2]
Liu X Y. Progress in Chemistry, 2020, 32(8): 1184.
( 刘晓旸. 化学进展, 2020, 32(8): 1184.).
[3]
Liu X Y. Progress in Chemistry, 2009, 21(7/8): 1373.
( 刘晓旸. 化学进展, 2009, 21(7/8): 1373.).
[4]
Eswarappa Prameela S, Pollock T M, Raabe D, Meyers M A, Aitkaliyeva A, Chintersingh K L, Cordero Z C, Graham-Brady L. Nat. Rev. Mater., 2022, 8(2): 81.
[5]
Helled R, Mazzola G, Redmer R. Nat. Rev. Phys., 2020, 2(10): 562.
[6]
Hirose K, Wood B, Vočadlo L. Nat. Rev. Earth Environ., 2021, 2(9): 645.
[7]
McMillan P F. Nat. Mater., 2002, 1(1): 19.
[8]
Horvath-Bordon E, Riedel R, Zerr A, McMillan P F, Auffermann G, Prots Y, Bronger W, Kniep R, Kroll P. Chem. Soc. Rev., 2006, 35(10): 987.
[9]
Zhang X, Zhao Y, Yang G. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12(3): e1582.
[10]
Miao M S, Sun Y H, Zurek E, Lin H Q. Nat. Rev. Chem., 2020, 4(10): 508.
[11]
Lobanov S S, Chen P N, Chen X J, Zha C S, Litasov K D, Mao H K, Goncharov A F. Nat. Commun., 2013, 4: 2446.
[12]
McMillan P F. Chem. Soc. Rev., 2006, 35(10): 855.
[13]
Akahama Y, Kawamura H, Häusermann D, Hanfland M, Shimomura O. Phys. Rev. Lett., 1995, 74(23): 4690.
[14]
Shimizu K, Suhara K, Ikumo M, Eremets M I, Amaya K. Nature, 1998, 393(6687): 767.
[15]
Eremets M, Gregoryanz E, Struzhkin V, Mao H K, Hemley R, Mulders N, Zimmerman N. Phys. Rev. Lett., 2000, 85(13): 2797.
[16]
Somayazulu M, Dera P, Goncharov A F, Gramsch S A, Liermann P, Yang W G, Liu Z X, Mao H K, Hemley R J. Nat. Chem., 2010, 2(1): 50.
[17]
Mao W L, Mao H K, Meng Y, Eng P J, Hu M Y, Chow P, Cai Y Q, Shu J F, Hemley R J. Science, 2006, 314(5799): 636.
[18]
Ginzburg V L. Physics-Uspekhi, 1999, 42(4): 353.
[19]
Mukhin K N, Sustavov A F, Tikhonov V N. Physics-Uspekhi, 2003, 46(5): 493.
[20]
Ashcroft N W. Phys. Rev. Lett., 2004, 92(18): 187002.
[21]
Carlsson A E, Ashcroft N W. Phys. Rev. Lett., 1983, 50(17): 1305.
[22]
Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O. Proc. Natl. Acad. Sci. USA, 2009, 106(42): 17640.
[23]
Kleppe A K, Amboage M, Jephcoat A P. Sci. Rep., 2014, 4: 4989.
[24]
Somayazulu M S, Finger L W, Hemley R J, Mao H K. Science, 1996, 271(5254): 1400.
[25]
Strobel T A, Somayazulu M, Sinogeikin S V, Dera P, Hemley R J. J. Am. Chem. Soc., 2016, 138(42): 13786.
[26]
Strobel T A, Chen X J, Somayazulu M, Hemley R J. J. Chem. Phys., 2010, 133(16): 164512.
[27]
Strobel T A, Somayazulu M, Hemley R J. Phys. Rev. Lett., 2009, 103(6): 065701.
[28]
Loubeyre P, Letoullec R, Pinceaux J P. Phys. Rev. Lett., 1992, 69(8): 1216.
[29]
Hemley R J. Annu. Rev. Phys. Chem., 2000, 51: 763.
[30]
Bernard S, Loubeyre P, ZÉrah G. Europhys. Lett., 1997, 37(7): 477.
[31]
Yao Y, Klug D D. Phys. Rev. B, 2011, 83(2): 020105.
[32]
Matsumoto N, Nagara H. J. Phys.: Condens. Matter, 2007, 19(36): 365237.
[33]
Chacham H, Koiller B. Phys. Rev. B, 1995, 52(9): 6147.
[34]
Ji C, Goncharov A F, Shukla V, Jena N K, Popov D, Li B, Wang J Y, Meng Y, Prakapenka V B, Smith J S, Ahuja R, Yang W G, Mao H K. Proc. Natl. Acad. Sci. USA, 2017, 114(14): 3596.
[35]
Ulivi L, Bini R, Loubeyre P, Letoullec R, Jodl H. Phys. Rev. B, 1999, 60(9): 6502.
[36]
Mao H K, Hemley R J. Rev. Mod. Phys., 1994, 66(2): 671.
[37]
Goncharov A F, Eggert J H, Mazin I I, Hemley R J, Mao H K. Phys. Rev. B, 1996, 54(22): R15590.
[38]
LeSar R, Ekberg S A, Jones L H, Mills R L, Schwalbe L A, Schiferl D. Solid State Commun., 1979, 32(2): 131.
[39]
Dias R P, Silvera I F. Science, 2017, 355(6326): 715.
[40]
Hemley R J, Ashcroft N W. Phys. Today, 1998, 51(8): 26.
[41]
Wigner E, Huntington H B. J. Chem. Phys., 1935, 3(12): 764.
[42]
Asaumi K, Mori T, Kondo Y. Phys. Rev. Lett., 1982, 49(11): 837.
[43]
Caldwell W A, Nguyen J H, Pfrommer B G, Mauri F, Louie S G, Jeanloz R. Science, 1997, 277(5328): 930.
[44]
Chacham H, Zhu X J, Louie S G. Phys. Rev. B, 1992, 46(11): 6688.
[45]
Goettel K A, Eggert J H, Silvera I F, Moss W C. Phys. Rev. Lett., 1989, 62(6): 665.
[46]
Itie J P, Le Toullec R. J. Phys. Colloques, 1984, 45(C8): C8.
[47]
Jephcoat A P, Mao H K, Finger L W, Cox D E, Hemley R J, Zha C S. Phys. Rev. Lett., 1987, 59(23): 2670.
[48]
Ray A K, Trickey S B, Weidman R S, Kunz A B. Phys. Rev. Lett., 1980, 45(11): 933.
[49]
Reichlin R, Brister K E, McMahan A K, Ross M, Martin S, Vohra Y K, Ruoff A L. Phys. Rev. Lett., 1989, 62(6): 669.
[50]
Ross M, McMahan A K. Phys. Rev. B, 1980, 21(4): 1658.
[51]
Syassen K. Phys. Rev. B, 1982, 25(10): 6548.
[52]
Zisman A N, Aleksandrov I V, Stishov S M. Phys. Rev. B, 1985, 32(1): 484.
[53]
Hanni M, Lantto P, Runeberg N, Jokisaari J, Vaara J. J. Chem. Phys., 2004, 121(12): 5908.
[54]
Asaumi K. Phys. Rev. B, 1984, 29(12): 7026.
[55]
Khriachtchev L, Lignell A, Juselius J, Räsänen M, Savchenko E. J. Chem. Phys., 2005, 122(1): 014510.
[56]
Bartlett N. Proc. Chem. Soc., 1962, (June): 197.
[57]
Grochala W. Chem. Soc. Rev., 2007, 36(10): 1632.
[58]
Tramšek M, Žemva B. Acta Chim. Slov., 2006, 53(2): 105.
[59]
Brown E C, Cohen A, Benny Gerber R. J. Chem. Phys., 2005, 122(17): 171101.
[60]
Pauling L. Proc. Natl. Acad. Sci. USA, 1976, 73(5): 1403.
[61]
Dixon D A, de Jong W A, Peterson K A, Christe K O, Schrobilgen G J. J. Am. Chem. Soc., 2005, 127(24): 8627.
[62]
Jortner J, Rice S A, Wilson E G. J. Chem. Phys., 1963, 38(9): 2302.
[63]
Kim M, Debessai M, Yoo C S. Nat. Chem., 2010, 2(9): 784.
[64]
Agron P A, Begun G M, Levy H A, Mason A A, Jones C G, Smith D F. Science, 1963, 139(3557): 842.
[65]
Meissner W, Ochsenfeld R. Naturwissenschaften, 1933, 21(44): 787.
[66]
Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, Eremets M. Phys. Rep., 2020, 856: 1.
[67]
London F, London H, Lindemann F A. Proc. R. Soc. Lond., 1935, 149(866): 71.
[68]
Bardeen J, Cooper L N, Schrieffer J R. Phys. Rev., 1957, 106(1): 162.
[69]
Bardeen J, Cooper L N, Schrieffer J R. Phys. Rev., 1957, 108(5): 1175.
[70]
Bednorz J G, Müller K A. Z. Physi. B Condens. Matter, 1986, 64(2): 189.
[71]
Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W. Phys. Rev. Lett., 1987, 58(9): 908.
[72]
Schilling A, Cantoni M, Guo J D, Ott H R. Nature, 1993, 363(6424): 56.
[73]
Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y. Nature, 1993, 365(6444): 323.
[74]
Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J, Mao H K. Phys. Rev. B., 1994, 50(6): 4260.
[75]
Kamihara Y, Watanabe T, Hirano M, Hosono H. J. Am. Chem. Soc., 2008, 130(11): 3296.
[76]
Ginzburg V L. Contemp. Phys., 1992, 33(1): 15.
[77]
Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I. Nature, 2015, 525(7567): 73.
[78]
Li Y W, Hao J, Liu H Y, Li Y L, Ma Y M. J. Chem. Phys., 2014, 140(17): 174712.
[79]
Goncharov A F, Hemley R J. Chem. Soc. Rev., 2006, 35(10): 899.
[80]
Shimizu H, Nakamichi Y, Sasaki S. J. Chem. Phys., 1991, 95(3): 2036.
[81]
Endo S, Ichimiya N, Koto K, Sasaki S, Shimizu H. Phys. Rev. B, 1994, 50(9): 5865.
[82]
Endo S, Honda A, Sasaki S, Shimizu H, Shimomura O, Kikegawa T. Phys. Rev. B, 1996, 54(2): R717.
[83]
Sakashita M, Yamawaki H, Fujihisa H, Aoki K, Sasaki S, Shimizu H. Phys. Rev. Lett., 1997, 79(6): 1082.
[84]
Cockcroft J K, Fitch A N. Zeitschrift Für Kristallographie Cryst. Mater., 1990, 193(1/4): 1.
[85]
Collins M J, Ratcliffe C I, Ripmeester J A. J. Phys. Chem., 1989, 93(21): 7495.
[86]
Fujihisa H, Yamawaki H, Sakashita M, Nakayama A, Yamada T, Aoki K. Phys. Rev. B, 2004, 69(21): 214102.
[87]
Rousseau R, Boero M, Bernasconi M, Parrinello M, Terakura K. Phys. Rev. Lett., 2000, 85(6): 1254.
[88]
Kometani S, Eremets M I, Shimizu K, Kobayashi M, Amaya K. J. Phys. Soc. Jpn., 1997, 66(9): 2564.
[89]
Gao G Y, Oganov A R, Li P F, Li Z W, Wang H, Cui T, Ma Y M, Bergara A, Lyakhov A O, Iitaka T, Zou G T. Proc. Natl. Acad. Sci. USA, 2010, 107(4): 1317.
[90]
Gao G Y, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y M, Zou G T. Phys. Rev. Lett., 2008, 101(10): 107002.
[91]
Strobel T A, Ganesh P, Somayazulu M, Kent P R C, Hemley R J. Phys. Rev. Lett., 2011, 107(25): 255503.
[92]
Duan D F, Liu Y X, Tian F B, Li D, Huang X L, Zhao Z L, Yu H Y, Liu B B, Tian W J, Cui T. Sci. Rep., 2014, 4: 6968.
[93]
Duan D F, Huang X L, Tian F B, Li D, Yu H Y, Liu Y X, Ma Y B, Liu B B, Cui T. Phys. Rev. B, 2015, 91(18): 180502.
[94]
Bernstein N, Stephen Hellberg C, Johannes M D, Mazin I I, Mehl M J. Phys. Rev. B, 2015, 91(6): 060511.
[95]
Satterthwaite C B, Toepke I L. Phys. Rev. Lett., 1970, 25(11): 741.
[96]
Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M. Phys. Rev. Lett., 2017, 119(10): 107001.
[97]
Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, Hemley R J. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(27): 6990.
[98]
Wang H, Li X, Gao G Y, Li Y W, Ma Y M. Wires Comput. Mol. Sci., 2018, 8(1): e1330.
[99]
Sun Y, Lv J, Xie Y, Liu H Y, Ma Y M. Phys. Rev. Lett., 2019, 123(9): 097001.
[100]
Salke N P, Davari Esfahani M M, Zhang Y J, Kruglov I A, Zhou J S, Wang Y G, Greenberg E, Prakapenka V B, Liu J, Oganov A R, Lin J F. Nat. Commun., 2019, 10: 4453.
[101]
Li X, Huang X L, Duan D F, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y P, Zhou Q, Liu B B, Cui T. Nat. Commun., 2019, 10: 3461.
[102]
Geballe Z M, Liu H Y, Mishra A K, Ahart M, Somayazulu M, Meng Y, Baldini M, Hemley R J. Angew. Chem. Int. Ed., 2018, 57(3): 688.
[103]
Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J. Phys. Rev. Lett., 2019, 122(2): 027001.
[104]
Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I. Nature, 2019, 569(7757): 528.
[105]
Bi J K, Nakamoto Y, Zhang P Y, Shimizu K, Zou B, Liu H Y, Zhou M, Liu G T, Wang H B, Ma Y M. Nat. Commun., 2022, 13: 5952.
[106]
Sun W G, Kuang X Y, Keen H D J, Lu C, Hermann A. Phys. Rev. B, 2020, 102(14): 144524.
[107]
Ashcroft N W. Phys. Rev. Lett., 1968, 21(26): 1748.
[108]
Simon A. Angew. Chem. Int. Ed. Engl., 1997, 36(17): 1788.
[109]
Mao H K, Ji C, Li B, Liu G, Gregoryanz E. Engineering, 2020, 6(9): 976.
[110]
Jin C, Liu Y, Wang L J, Zhang W J, Zhang T L, Zhu J L. RSC Adv., 2020, 10(50): 30069.
[111]
Talawar M B, Sivabalan R, Mukundan T, Muthurajan H, Sikder A K, Gandhe B R, Rao A S. J. Hazard. Mater., 2009, 161(2/3): 589.
[112]
Badgujar D M, Talawar M B, Asthana S N, Mahulikar P P. J. Hazard. Mater., 2008, 151(2/3): 289.
[113]
Zarko V E. Combust. Explos. Shock. Waves, 2010, 46(2): 121.
[114]
Mailhiot C, Yang L H, McMahan A K. Phys. Rev. B, 1992, 46(22): 14419.
[115]
Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R. Nat. Mater., 2004, 3(8): 558.
[116]
Gregoryanz E, Goncharov A F, Sanloup C, Somayazulu M, Mao H K, Hemley R J. J. Chem. Phys., 2007, 126(18): 184505.
[117]
Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, Mao H K. Sci. Adv., 2020, 6(23): eaba9206.
[118]
Lipp M J, Klepeis J P, Baer B J, Cynn H, Evans W J, Iota V, Yoo C S. Phys. Rev. B, 2007, 76: 014113.
[119]
Tomasino D, Kim M, Smith J, Yoo C S. Phys. Rev. Lett., 2014, 113(20): 205502.
[120]
Samartzis P C, Wodtke A M. Int. Rev. Phys. Chem., 2006, 25(4): 527.
[121]
Goncharov A F, Gregoryanz E, Mao H K, Liu Z X, Hemley R J. Phys. Rev. Lett., 2000, 85(6): 1262.
[122]
Eremets M I, Hemley R J, Mao H K, Gregoryanz E. Nature, 2001, 411(6834): 170.
[123]
Yoo C S. Matter Radiat. Extrem., 2020, 5(1): 018202.
[124]
Madadi Avargani V, Zendehboudi S, Cata Saady N M, Dusseault M B. Energy Convers. Manag., 2022, 269: 115927.
[125]
Johnston B, Mayo M C, Khare A. Technovation, 2005, 25(6): 569.
[126]
Castelvecchi D. Nature, 2017, 542(7639): 17.
[127]
Silvera I F, Wijngaarden R J. Phys. Rev. Lett., 1981, 47(1): 39.
[128]
Hemley R J, Mao H K. Phys. Rev. Lett., 1988, 61(7): 857.
[129]
Lorenzana H E, Silvera I F, Goettel K A. Phys. Rev. Lett., 1989, 63(19): 2080.
[130]
Eremets M I, Troyan I A. Nat. Mater., 2011, 10(12): 927.
[131]
Howie R T, Guillaume C L, Scheler T, Goncharov A F, Gregoryanz E. Phys. Rev. Lett., 2012, 108(12): 125501.
[132]
Goncharov A F, Howie R T, Gregoryanz E. Low Temp. Phys., 2013, 39(5): 402.
[133]
Alfè D, Gillan M J, Price G D. Earth Planet. Sci. Lett., 2002, 195(1/2): 91.
[134]
Chabrier G, Saumon D, Hubbard W B, Lunine J I. Astrophys. J. Lett., 1992, 391: 817.
[135]
Young D A, McMahan A K, Ross M. Phys. Rev. B, 1981, 24(9): 5119.
[136]
Weir S T, Mitchell A C, Nellis W J. Phys. Rev. Lett., 1996, 76(11): 1860.
[137]
Stixrude L, Jeanloz R. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(32): 11071.
[138]
Ichimaru S. Rev. Mod. Phys., 1982, 54(4): 1017.
[139]
Klepeis J E, Schafer K J, Barbee T W III, Ross M. Science, 1991, 254(5034): 986.
[140]
Pfaffenzeller O, Hohl D, Ballone P. Phys. Rev. Lett., 1995, 74(13): 2599.
[141]
Fortney J J, Hubbard W B. Astrophys. J. Lett., 2004, 608(2): 1039.
[142]
Olson P, Christensen U R. Earth Planet. Sci. Lett., 2006, 250(3/4): 561.
[143]
Ramsay W. Proc. R. Soc. Lond., 1903, 71(467/476): 421.
[144]
Sanloup C, Schmidt B C, Perez E M C, Jambon A, Gregoryanz E, Mezouar M. Science, 2005, 310(5751): 1174.
[145]
Mahaffy P R, Niemann H B, Alpert A, Atreya S K, Demick J, Donahue T M, Harpold D N, Owen T C. J. Geophys. Res., 2000, 105(E6): 15061.
[146]
Owen T, Mahaffy P, Niemann H B, Atreya S, Donahue T, Bar-Nun A, de Pater I. Nature, 1999, 402(6759): 269.
[147]
Dewaele A, Worth N, Pickard C J, Needs R J, Pascarelli S, Mathon O, Mezouar M, Irifune T. Nat. Chem., 2016, 8(8): 784.
[148]
Zhu L, Liu H Y, Pickard C J, Zou G T, Ma Y M. Nat. Chem., 2014, 6(7): 644.

Funding

The National Natural Science Foundation of China(22171101)
PDF(9895 KB)

Accesses

Citation

Detail

Sections
Recommended

/