Multifunctional Organic Luminescent Materials Based on Benzophenone Frameworks

Wei Tang, Yan Bing, Xudong Liu, Hongji Jiang

Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1461-1485.

PDF(28902 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(28902 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1461-1485. DOI: 10.7536/PC230306
Review

Multifunctional Organic Luminescent Materials Based on Benzophenone Frameworks

Author information +
History +

Abstract

The optoelectronic properties of organic luminescent materials are strongly correlated with the molecular structure, the flexibility of conformational change and the intermolecular interaction. From the perspective of structure, the carbonyl group and benzene ring of benzophenone have high chemical modifiability. In this paper, the chemical synthesis methods to produce multifunctional organic luminescent materials based on benzophenone framework in recent years are systematically reviewed, including three basic strategies: multiple substitution of benzophenone, using heteroatom as bridging group, vinyl coupling and direct coupling of benzene ring as the center. A variety of multifunctional organic luminescent materials based on this framework have been developed, including fluorescence materials, hosts of precious metal phosphorescence complex, thermally activated delayed fluorescence materials, aggregation-induced emission materials and pure organic room temperature phosphorescence materials. Finally, the development prospect of multi-functional organic luminescent materials based on benzophenone framework is prospected.

Contents

1 Introduction

2 Fluorescence materials based on benzophenone framework

3 Hosts based on benzophenone framework for precious metal phosphorescence complex

4 Thermally activated delayed fluorescence materials based on benzophenone framework

5 Aggregation-induced emission materials based on benzophenone framework

6 Pure organic room temperature phosphorescence materials based on benzophenone framework

7 Conclusions and outlook

Key words

benzophenone / chemically modified / multifunctional organic luminescent materials / fluorescence / host / thermally activated delayed fluorescence / aggregation-induced emission / room temperature phosphorescence

Cite this article

Download Citations
Wei Tang , Yan Bing , Xudong Liu , et al. Multifunctional Organic Luminescent Materials Based on Benzophenone Frameworks[J]. Progress in Chemistry. 2023, 35(10): 1461-1485 https://doi.org/10.7536/PC230306

References

[1]
Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51(12): 913.
[2]
D’Andrade B W, Forrest S R. Adv. Mater., 2004, 16(18): 1585.
[3]
Gopalan R, Sugumar R W. Indian J. Chem., 1978, 16 (3): 198.
[4]
Stack D E, Dawson B T, Rieke R D. J. Am. Chem. Soc., 1991, 113(12): 4672.
[5]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q A, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114(13): 6090.
[6]
Laporte J L, Nouchi G, Rousset Y. J. Chem. Phys., 1972, 57(4): 1767.
[7]
Shizu K, Kaji H. J. Phys. Chem. A, 2021, 125(40): 9000.
[8]
Ravi S, Peters S, Varathan E, Ravi M, Arockia Selvi J. Colloids Surf. A, 2023, 661: 130919.
[9]
Roppolo I, Chiappone A, Bejtka K, Celasco E, Chiodoni A, Giorgis F, Sangermano M, Porro S. Carbon, 2014, 77: 226.
[10]
Davydova N A, Mel’nik V I, Nelipovitch K, Baran J, Kukielski J I. Phys. Rev. B, 2002, 65(9): 094201.
[11]
Zhao W L, Carreira E M. Org. Lett., 2006, 8(1): 99.
[12]
Xie N, Liu Y, Hu R R, Leung N L C, Arseneault M, Tang B Z. ISR J. Chem., 2014, 54(7): 958.
[13]
Wang S Z, Xie K, Tan Z, An X Y, Zhou X J, Guo C C, Peng Z H. Chem. Commun., 2009(42): 6469.
[14]
Wu H, Zhang Z G, Liu Q F, Liu T X, Ma N N, Zhang G S. Org. Lett., 2018, 20(10): 2897.
[15]
Zhang Z G, Gao Y A, Liu Y A, Li J J, Xie H X, Li H, Wang W. Org. Lett., 2015, 17(21): 5492.
[16]
Liang E X, Su F, Liang Y, Wang G X, Xu W Y, Li S, Yang C X, Tang J X, Zhou N B. Chem. Commun., 2020, 56(96): 15169.
[17]
Eisch J J, Fregene P O. Eur. J. Org. Chem., 2008, 2008(26): 4482.
[18]
Paquette L A, Chamot E, Browne A R. J. Am. Chem. Soc., 1980, 102(2): 637.
[19]
Wei Y, Samori S, Tojo S, Fujitsuka M, Lin J S, Chen C T, Majima T. J. Am. Chem. Soc., 2009, 131(19): 6698.
[20]
Li H, Zhu R Y, Shi W J, He K H, Shi Z J. Org. Lett., 2012, 14(18): 4850.
[21]
Ma W X, Bin Z Y, Yang G, Liu J J, You J S. Angew. Chem. Int. Ed., 2022, 61(11): e202116681.
[22]
Henderson L J Jr, Fronczek F R, Cherry W R. J. Am. Chem. Soc., 1984, 106(20): 5876.
[23]
Singh A K, Jang S, Kim J Y, Sharma S, Basavaraju K C, Kim M G, Kim K R, Lee J S, Lee H H, Kim D P. ACS Catal., 2015, 5(11): 6964.
[24]
Poriel C, Rault-Berthelot J. Acc. Chem. Res., 2018, 51(8): 1818.
[25]
Thirion D, Poriel C, Barrière F, MÉtivier R, Jeannin O, Rault-Berthelot J. Org. Lett., 2009, 11(21): 4794.
[26]
Fix A G, Chase D T, Haley M M. Top. Curr. Chem., 2014, 349: 159.
[27]
Li Y Y, Lu H Y, Li M, Li X J, Chen C F. J. Org. Chem., 2014, 79(5): 2139.
[28]
Kaiser R P, Nečas D, Cadart T, Gyepes R, Císařová I, Mosinger J, Pospíšil L, Kotora M. Angew. Chem. Int. Ed., 2019, 58(48): 17169.
[29]
Sharma R, Thomas M B, Misra R, D'Souza F. Angew. Chem. Int. Ed., 2019, 58(13): 4350.
[30]
Kamino B A, Mills B, Reali C, Gretton M J, Brook M A, Bender T P. J. Org. Chem., 2012, 77(4): 1663.
[31]
Liu F, Xie L H, Tang C, Liang J, Chen Q Q, Peng B, Wei W, Cao Y, Huang W. Org. Lett., 2009, 11(17): 3850.
[32]
Maciejczyk M, Ivaturi A, Robertson N. J. Mater. Chem. A, 2016, 4(13): 4855.
[33]
Bhanuchandra M, Yorimitsu H, Osuka A. Org. Lett., 2016, 18(3): 384.
[34]
Liu H, Liu Z W, Li G G, Huang H N, Zhou C J, Wang Z M, Yang C L. Angew. Chem. Int. Ed., 2021, 60(22): 12376.
[35]
Fan X C, Wang K, Zheng C J, Dai G L, Shi Y Z, Li Y Q, Yu J A, Ou X M, Zhang X H. J. Mater. Chem. C, 2019, 7(29): 8923.
[36]
Wu L, Wang K, Wang C, Fan X C, Shi Y Z, Zhang X A, Zhang S L, Ye J, Zheng C J, Li Y Q, Yu J A, Ou X M, Zhang X H. Chem. Sci., 2021, 12(4): 1495.
[37]
Jiang H J, Sun J A. New J. Chem., 2013, 37(10): 3161.
[38]
Shen Y, Tang X H, Xu Y W, Liu H C, Zhang S T, Yang B, Ma Y G. Chin. Chem. Lett., 2019, 30(11): 1947.
[39]
Chen J K, Zeng J J, Zhu X Y, Guo J J, Zhao Z J, Tang B Z. CCS Chem., 2021, 3(12): 230.
[40]
Wang L J, Nan G J, Yang X D, Peng Q A, Li Q K, Shuai Z G. Chem. Soc. Rev., 2010, 39(2): 423.
[41]
Neogi I, Darshan V, Linet A, Anjalikrishna P K, Sebastian A, Mohanty G, Morimoto A, Suresh C H, Yagi S, Posner Y D, Grynszpan F, Unni N. Synth. Met., 2022, 291: 117185.
[42]
Wu K C, Ku P J, Lin C S, Shih H T, Wu F I, Huang M J, Lin J J, Chen I C, Cheng C H. Adv. Funct. Mater., 2008, 18(1): 67.
[43]
Cho I, Kim S H, Kim J H, Park S, Park S Y. J. Mater. Chem., 2012, 22(1): 123.
[44]
Schmidbauer S, Hohenleutner A, König B. Adv. Mater., 2013, 25(15): 2114.
[45]
So F, Kondakov D. Adv. Mater., 2010, 22(34): 3762.
[46]
Lin N, Qiao J A, Duan L A, Wang L D, Qiu Y. J. Phys. Chem. C, 2014, 118(14): 7569.
[47]
Grimsdale A C, Leok Chan K, Martin R E, Jokisz P G, Holmes A B. Chem. Rev., 2009, 109(3): 897.
[48]
Pogantsch A, Wenzl F P, List E J W, Leising G, Grimsdale A C, Müllen K. Adv. Mater., 2002, 14(15): 1061.
[49]
Xiao S, Nguyen M, Gong X, Cao Y, Wu H, Moses D, Heeger A J. Adv. Funct. Mater., 2003, 13(1): 25.
[50]
Scherf U, List E J W. Adv. Mater., 2002, 14(7): 477.
[51]
Zojer E, Pogantsch A, Hennebicq E, Beljonne D, BrÉdas J L, Scandiucci de Freitas P, Scherf U, List E J W. J. Chem. Phys., 2002, 117(14): 6794.
[52]
Zhou X Y, Hui T Q, Han Y Y, Huang X T, Jiang X N, Liu C, Yan J. J. Mol. Struct., 2021, 1234: 130185.
[53]
Chen L, Chen K Z, Yao R J, Zeng R P, Lin Y C, Jian R K, Bai W B. Mater. Chem. Phys., 2022, 285: 126083.
[54]
Rakstys K, Saliba M, Gao P, Gratia P, Kamarauskas E, Paek S, Jankauskas V, Nazeeruddin M K. Angew. Chem. Int. Ed., 2016, 55(26): 7464.
[55]
Wei Y, Chen C T. J. Am. Chem. Soc., 2007, 129(24): 7478.
[56]
Chen C T, Wei Y, Lin J S, Moturu M V R K, Chao W S, Tao Y T, Chien C H. J. Am. Chem. Soc., 2006, 128(34): 10992.
[57]
Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H. Adv. Mater., 2005, 17(3): 285.
[58]
Wang J L, Yan J, Tang Z M, Xiao Q, Ma Y G, Pei J A. J. Am. Chem. Soc., 2008, 130(30): 9952.
[59]
Wang J L, Tang Z M, Xiao Q, Zhou Q F, Ma Y G, Pei J A. Org. Lett., 2008, 10(1): 17.
[60]
Tang M L, Bao Z N. Chem. Mater., 2011, 23(3): 446.
[61]
Babudri F, Farinola G M, Naso F, Ragni R. Chem. Commun., 2007(10): 1003.
[62]
Li Z F, Jiao B, Wu Z X, Liu P, Ma L, Lei X L, Wang D D, Zhou G J, Hu H M, Hou X. J. Mater. Chem. C, 2013, 1(11): 2183.
[63]
Thirion D, Poriel C, Barrière F, MÉtivier R, Jeannin O, Rault-Berthelot J. Org. Lett., 2009, 11(21): 4794.
[64]
Xie L H, Liu F, Tang C, Hou X Y, Hua Y R, Fan Q L, Huang W. Org. Lett., 2006, 8(13): 2787.
[65]
Sun M L, Xu R C, Xie L H, Wei Y, Huang W. Chin. J. Chem., 2015, 33(8): 815.
[66]
Cao H T, Wan J, Li B, Zhang H, Xie L H, Sun C, Feng Q Y, Yu W J, Huang W. Dyes Pigm., 2021, 185: 108894.
[67]
Liang X Z, Wang K X, Zhang R Q, Li K, Lu X Q, Guo K P, Wang H A, Miao Y Q, Xu H X, Wang Z Q. Dyes Pigm., 2017, 139: 764.
[68]
Li Y Y, Li Y M, Zhao Y L, Yu T Z, Su W M, Wang R D, Ma H L, Qian L. Synth. Met., 2021, 277: 116771.
[69]
Li Y C, Wang Z H, Li X L, Xie G Z, Chen D C, Wang Y F, Lo C C, A L E, Peng J B, Cao Y, Su S J. Chem. Mater., 2015, 27(3): 1100.
[70]
Zou S J, Shen Y, Xie F M, Chen J D, Li Y Q, Tang J X. Mater. Chem. Front., 2020, 4(3): 788.
[71]
Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395(6698): 151.
[72]
Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R. Nature, 2006, 440(7086): 908.
[73]
Chandra V K, Chandra B P. Org. Electron., 2012, 13(2): 329.
[74]
Tao Y T, Yang C L, Qin J G. Chem. Soc. Rev., 2011, 40(5): 2943.
[75]
Jhulki S, Seth S, Ghosh A, Chow T J, Moorthy J N. ACS Appl. Mater. Interfaces, 2016, 8(2): 1527.
[76]
Zhang Y, Li Z, Li C, Wang Y. Front. Chem., 2019, 7: 302.
[77]
Ramachandran K, Vijayakumar P, Raja A, Mohankumar V, Vinitha G, Senthil Pandian M, Ramasamy P. J. Mater. Sci., 2018, 29(10): 8571.
[78]
Matsushima T, Adachi C. J. Appl. Phys., 2008, 103(3): 034501.
[79]
Klenkler R A, Aziz H, Tran A, Popovic Z D, Xu G. Org. Electron., 2008, 9(3): 285.
[80]
Lee J H, Wu C I, Liu S W, Huang C A, Chang Y. Appl. Phys. Lett., 2005, 86(10): 103506.
[81]
Vezzu D A K, Deaton J C, Shayeghi M, Li Y M, Huo S Q. Org. Lett., 2009, 11(19): 4310.
[82]
Wu C C, Liu T L, Hung W Y, Lin Y T, Wong K T, Chen R T, Chen Y M, Chien Y Y. J. Am. Chem. Soc., 2003, 125(13): 3710.
[83]
Wong K T, Chen Y M, Lin Y T, Su H C, Wu C C. Org. Lett., 2005, 7(24): 5361.
[84]
Jiang Z Q, Yao H Q, Zhang Z Q, Yang C L, Liu Z Y, Tao Y T, Qin J G, Ma D G. Org. Lett., 2009, 11(12): 2607.
[85]
Jiang W F, Wang H L, Wang A G, Li Z Q. Synth. Commun., 2008, 38(12): 1888.
[86]
Sun M L, Yue S Z, Lin J R, Ou C J, Qian Y, Zhang Y, Li Y, Wei Q, Zhao Y, Xie L H, Huang W. Synth. Met., 2014, 195: 321.
[87]
Qian Y, Xie G H, Chen S F, Liu Z D, Ni Y R, Zhou X H, Xie L H, Liang J, Zhao Y Z, Yi M H, Zhao Y, Wei W, Huang W. Org. Electron., 2012, 13(11): 2741.
[88]
Zhao J E, Xie G H, Yin C R, Xie L H, Han C M, Chen R F, Xu H, Yi M D, Deng Z P, Chen S F, Zhao Y, Liu S Y, Huang W. Chem. Mater., 2011, 23(24): 5331.
[89]
Son H S, Lee J Y. Org. Electron., 2011, 12(6): 1025.
[90]
Chi L C, Hung W Y, Chiu H C, Wong K T. Chem. Commun., 2009,(26): 3892.
[91]
Moon C K, Suzuki K, Shizu K, Adachi C, Kaji H, Kim J J. Adv. Mater., 2017, 29(17): 1606448.
[92]
Zhan L S, Chen Z X, Gong S L, Xiang Y P, Ni F, Zeng X, Xie G H, Yang C L. Angew. Chem. Int. Ed., 2019, 58(49): 17651.
[93]
Xie F M, Zhou J X, Li Y Q, Tang J X. J. Mater. Chem. C, 2020, 8(28): 9476.
[94]
Pan K C, Li S W, Ho Y Y, Shiu Y J, Tsai W L, Jiao M, Lee W K, Wu C C, Chung C L, Chatterjee T, Li Y S, Wong K T, Hu H C, Chen C C, Lee M T. Adv. Funct. Mater., 2016, 26(42): 7560.
[95]
Wu T L, Huang M J, Lin C C, Huang P Y, Chou T Y, Chen-Cheng R W, Lin H W, Liu R S, Cheng C H. Nat. Photonics, 2018, 12(4): 235.
[96]
Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C. Adv. Mater., 2016, 28(32): 6976.
[97]
Zhang Y L, Ran Q, Wang Q, Liu Y, Hänisch C, Reineke S, Fan J, Liao L S. Adv. Mater., 2019, 31(42): 1902368.
[98]
Li J, Nakagawa T, MacDonald J, Zhang Q S, Nomura H, Miyazaki H, Adachi C. Adv. Mater., 2013, 25(24): 3319.
[99]
Li C, Liang J, Liang B, Li Z, Cheng Z, Yang G, Wang Y. Adv. Opt. Mater., 2019, 7 (10): 1801667.
[100]
Aizawa N, Tsou C J, Park I S, Yasuda T. Polym. J., 2017, 49(1): 197.
[101]
Chen Z X, Ni F, Wu Z B, Hou Y C, Zhong C, Huang M L, Xie G H, Ma D G, Yang C L. J. Phys. Chem. Lett., 2019, 10(11): 2669.
[102]
Zhao H B, Wang Z H, Cai X Y, Liu K K, He Z Z, Liu X, Cao Y, Su S J. Mater. Chem. Front., 2017, 1(10): 2039.
[103]
Wang F F, Cao X D, Mei L, Zhang X W, Hu J, Tao Y T. Chin. J. Chem., 2018, 36(3): 241.
[104]
Kreiza G, Banevičius D, Jovaišaite J, Maleckaite K, Gudeika D, Volyniuk D, Gražulevičius J V, Juršenas S, Kazlauskas K. J. Mater. Chem. C, 2019, 7(37): 11522.
[105]
Lee S Y, Yasuda T, Yang Y S, Zhang Q S, Adachi C. Angew. Chem. Int. Ed., 2014, 53(25): 6402.
[106]
Lee S Y, Yasuda T, Komiyama H, Lee J, Adachi C. Adv. Mater., 2016, 28(21): 4019.
[107]
Data P, Pander P, Okazaki M, Takeda Y, Minakata S, Monkman A P. Angew. Chem., 2016, 128(19): 5833.
[108]
Li C L, Duan R H, Liang B Y, Han G C, Wang S P, Ye K Q, Liu Y, Yi Y P, Wang Y. Angew. Chem. Int. Ed., 2017, 56(38): 11525.
[109]
Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K. J. Am. Chem. Soc., 2003, 125(42): 12971.
[110]
Cai X Y, Li X L, Xie G Z, He Z Z, Gao K, Liu K K, Chen D C, Cao Y, Su S J. Chem. Sci., 2016, 7(7): 4264.
[111]
Gan L, Li X L, Cai X Y, Liu K K, Li W, Su S J. Beilstein J. Org. Chem., 2018, 14: 672.
[112]
Lee J, Aizawa N, Numata M, Adachi C, Yasuda T. Adv. Mater., 2017, 29(4): 1604856.
[113]
Shaikh A M, Sharma B K, Kamble R M. J. Chem. Sci., 2015, 127(9): 1571.
[114]
Wang C G, Zhang Z L, Wang Y E. J. Mater. Chem. C, 2016, 4(42): 9918.
[115]
Pander P, Swist A, Motyka R, Soloducho J, Dias F B, Data P. J. Mater. Chem. C, 2018, 6(20): 5434.
[116]
Siddiqui Q T, Awasthi A A, Bhui P, Muneer M, Chandrakumar K R S, Bose S, Agarwal N. J. Phys. Chem. C, 2019, 123(2): 1003.
[117]
Xue M M, Huang C C, Yuan Y, Cui L S, Li Y X, Wang B, Jiang Z Q, Fung M K, Liao L S. ACS Appl. Mater. Interfaces, 2016, 8(31): 20230.
[118]
Sicard L, Quinton C, Peltier J D, Tondelier D, Geffroy B, Biapo U, MÉtivier R, Jeannin O, Rault-Berthelot J, Poriel C. Chem. A Eur. J., 2017, 23(32): 7719.
[119]
Nakagawa T, Ku S Y, Wong K T, Adachi C. Chem. Commun., 2012, 48(77): 9580.
[120]
Liang J J, Li Y, Yuan Y, Li S H, Zhu X D, Barlow S, Fung M K, Jiang Z Q, Marder S R, Liao L S. Mater. Chem. Front., 2018, 2(5): 917.
[121]
Chen X K, Tsuchiya Y, Ishikawa Y, Zhong C, Adachi C, BrÉdas J L. Adv. Mater., 2017, 29(46): 1702767.
[122]
Yi R H, Liu G Y, Luo Y T, Wang W Y, Tsai H Y, Lin C H, Shen H L, Chang C H, Lu C W. Chem. A Eur. J., 2021, 27(51): 12998.
[123]
Gan S F, Luo W W, He B R, Chen L, Nie H, Hu R R, Qin A J, Zhao Z J, Tang B Z. J. Mater. Chem. C, 2016, 4(17): 3705.
[124]
Xie Z L, Chen C J, Xu S D, Li J, Zhang Y, Liu S W, Xu J R, Chi Z G. Angew. Chem. Int. Ed., 2015, 54(24): 7181.
[125]
Xu S D, Liu T T, Mu Y X, Wang Y F, Chi Z G, Lo C C, Liu S W, Zhang Y, Lien A L, Xu J R. Angew. Chem. Int. Ed., 2015, 54(3): 874.
[126]
Xue Q, Xie G. Adv. Opt. Mater., 2021, 9 (14): 2002204.
[127]
Wong M Y, Zysman C E. Adv. Mater., 2017, 29 (22): 1605444.
[128]
Song Y J, Tian M X, Yu R Y, He L. ACS Appl. Mater. Interfaces, 2021, 13(50): 60269.
[129]
Hall D, Suresh S M, dos Santos P L, Duda E, Bagnich S, Pershin A, Rajamalli P, Cordes D B, Slawin A M Z, Beljonne D, Köhler A, Samuel I D W, Olivier Y, Zysman-Colman E. Adv. Optical Mater., 2020, 8(2): 1901627.
[130]
Huang X L, Zou J H, Liu J Z, Jin G, Li J B, Yao S L, Peng J B, Cao Y, Zhu X H. Org. Electron., 2018, 58: 139.
[131]
Cho Y J, Taylor S, Aziz H. ACS Appl. Mater. Interfaces, 2017, 9(46): 40564.
[132]
Jing Y Y, Tao X D, Yang M X, Chen X L, Lu C Z. Chem. Eng. J., 2021, 413: 127418.
[133]
Sarala L, Ramesh B Y, Peddaboodi G, Elanthamilan E, Bella A, Sundar M S, Parameswar K I, Princy M J. J. Photoch. Photobio. A, 2018, 365: 232.
[134]
Jiang T C, Liu Y C, Ren Z J, Yan S K. Polym. Chem., 2020, 11(9): 1555.
[135]
Wei Q, Fei N N, Islam A, Lei T, Hong L, Peng R X, Fan X, Chen L, Gao P Q, Ge Z Y. Adv. Opt. Mater., 2018, 6(20): 1800512.
[136]
Philipps K, Ie Y, van der Zee B, Png R Q, Ho P K H, Chua L L, del Pino Rosendo E, Ramanan C, Wetzelaer G J A H, Blom P W M, Michels J J. Adv. Sci., 2022, 9(19): 2200056.
[137]
Ban X X, Zhou T, Cao Q P, Zhang K Z, Tong Z W, Xu H, Zhu A Y, Jiang W. J. Mater. Chem. C, 2022, 10(40): 15114.
[138]
Li X, Yan L B, Liu S, Wang S M, Rao J C, Zhao L, Tian H K, Ding J Q, Wang L X. Angew. Chem. Int. Ed., 2023, 62(19): e202300529.
[139]
Rao J C, Yang L Q, Li X, Zhao L, Wang S M, Tian H K, Ding J Q, Wang L X. Angew. Chem. Int. Ed., 2021, 60(17): 9635.
[140]
Gandioso A, Bresolí-Obach R, Nin-Hill A, Bosch M, Palau M, Galindo A, Contreras S, Rovira A, Rovira C, Nonell S, Marchán V. J. Org. Chem., 2018, 83(3): 1185.
[141]
Zhang Y B, Xia S A, Fang M X, Mazi W F, Zeng Y B, Johnston T, Pap A, Luck R L, Liu H Y. Chem. Commun., 2018, 54(55): 7625.
[142]
Matsumoto S, Fuchi Y, Usui K, Hirai G, Karasawa S. J. Org. Chem., 2019, 84(11): 6612.
[143]
He P B, Xu H, An Z F, Cai Z Y, Cai Z X, Chao H, Chen B, Chen M, Chen Y, Chi Z G, Dai S T, Ding D, Dong Y P, Gao Z Y, Guan W J, He Z K, Hu J J, Hu R, Hu Y X, Huang Q Y, Kang M M, Li D X, Li J S, Li S Z, Li W L, Li Z, Liu X L, Liu H Y, Liu P Y, Lou X D, Lu C, Ma D G, Ou H L, Ouyang J, Peng Q, Qian J, Qin A J, Qu J M, Shi J B, Shuai Z G, Sun L H, Tian R, Tian W J, Tong B, Wang H L, Wang D, Wang H, Wan T, Wang X, Wang Y C, Wu S Z, Xia F, Xie Y J, Xion K, Xu B, Yan D P, Yang H B, Yang Q Z, Yang Z Y, Yuan L Z, Yuan W Z, Zang S Q, Zeng F, Zeng J J, Zeng Z, Zhang G Q, Zhang X Y, Zhang X P, Zhang Y, Zhang Y F, Zhang Z J, Zhao J, Zhao Z, Zhao Z H, Zhao Z J, Tang B Z. Prog. Chem., 2022, 34 (1): 1.
[144]
Leung N L C, Xie N, Yuan W Z, Liu Y, Wu Q Y, Peng Q, Miao Q, Lam J W Y, Tang B Z. Chem. A Eur. J., 2014, 20(47): 15349.
[145]
Hong Y N, Lam J W Y, Tang B Z. Chem. Soc. Rev., 2011, 40(11): 5361.
[146]
Pei Y, Xie J X, Cui D X, Liu S N, Li G F, Zhu D X, Su Z M. Dalton Trans., 2020, 49(37): 13066.
[147]
Saccone M, Riebe S, Stelzer J, Wölper C, Daniliuc C G, Voskuhl J, Giese M. CrystEngComm, 2019, 21(19): 3097.
[148]
Miao X R, Cai Z K, Zou H Q, Li J X, Zhang S Y, Ying L, Deng W L. J. Mater. Chem. C, 2022, 10(21): 8390.
[149]
Hong Y N, Lam J W Y, Tang B Z. Chem. Commun., 2009(29): 4332.
[150]
Liu J Z, Lam J W Y, Tang B Z. J. Inorg. Organomet. Polym. Mater., 2009, 19(3): 249.
[151]
Guo H X, Song X Y, Wang X H, Liu Y W, Redshaw C, Feng X. ChemistrySelect, 2022, 7(29): e202202208.
[152]
Zhao Z J, Lam J W Y, Tang B Z. J. Mater. Chem., 2012, 22(45): 23726.
[153]
Huang J, Chen P Y, Yang X, Tang R L, Wang L, Qin J, Li Z. Sci. China Chem., 2013, 56(9): 1213.
[154]
Duan Y L, Ju C G, Yang G, Fron E, Coutino-Gonzalez E, Semin S, Fan C C, Balok R S, Cremers J, Tinnemans P, Feng Y Q, Li Y L, Hofkens J, Rowan A E, Rasing T, Xu J L. Adv. Funct. Mater., 2016, 26(48): 8968.
[155]
Wang L Y, Xiong W, Tang H, Cao D R. J. Mater. Chem. C, 2019, 7(29): 9102.
[156]
Hoshino S, Suzuki H. Appl. Phys. Lett., 1996, 69(2): 224.
[157]
Xiong Q X, Xu C, Jiao N M, Ma X, Zhang Y Q, Zhang S J. Chin. Chem. Lett., 2019, 30(7): 1387.
[158]
Wang D S, Wang X, Xu C, Ma X. Sci. China Chem., 2019, 62(4): 430.
[159]
Xu S, Chen R F, Zheng C, Huang W. Adv. Mater., 2016, 28(45): 9920.
[160]
Hirata S. Adv. Opt. Mater., 2017, 5 (17): 1700116.
[161]
Qu G J, Zhang Y P, Ma X. Chin. Chem. Lett., 2019, 30(10): 1809.
[162]
Reineke S, Baldo M A. Sci. Rep., 2014, 4: 3797.
[163]
Liu Y, Zhan G, Liu Z W, Bian Z Q, Huang C H. Chin. Chem. Lett., 2016, 27(8): 1231.
[164]
Kalyanasundaram K, Grieser F, Thomas J K. Chem. Phys. Lett., 1977, 51(3): 501.
[165]
Alam P, Leung N L C, Liu J K, Cheung T S, Zhang X P, He Z K, Kwok R T K, Lam J W Y, Sung H H Y, Williams I D, Chan C C S, Wong K S, Peng Q, Tang B Z. Adv. Mater., 2020, 32(22): 2001026.
[166]
Cai S Z, Shi H F, Tian D, Ma H L, Cheng Z C, Wu Q, Gu M X, Huang L, An Z F, Peng Q, Huang W. Adv. Funct. Mater., 2018, 28(9): 1870060.
[167]
Narushima K, Kiyota Y, Mori T, Hirata S, Vacha M. Adv. Mater., 2019, 31(10): 1807268.
[168]
Yang J E, Zhen X, Wang B, Gao X M, Ren Z C, Wang J Q, Xie Y J, Li J R, Peng Q A, Pu K Y, Li Z. Nat. Commun., 2018, 9: 840.
[169]
Kearns D R, Case W A. J. Am. Chem. Soc., 1966, 88(22): 5087.
[170]
Shimizu M, Shigitani R, Nakatani M, Kuwabara K, Miyake Y, Tajima K, Sakai H, Hasobe T. J. Phys. Chem. C, 2016, 120(21): 11631.
[171]
Li J E, Jiang Y B, Cheng J A, Zhang Y L, Su H M, Lam J W Y, Sung H H Y, Wong K S, Kwok H S, Tang B Z. Phys. Chem. Chem. Phys., 2015, 17(2): 1134.
[172]
Gong Y Y, Zhao L F, Peng Q A, Fan D, Yuan W Z, Zhang Y M, Tang B Z. Chem. Sci., 2015, 6(8): 4438.
[173]
Zhao W J, He Z K, Lam J Y, Peng Q A, Ma H L, Shuai Z G, Bai G X, Hao J H, Tang ben zhong. Chem, 2016, 1(4): 592.
[174]
Liu Y, Deng C M, Tang L, Qin A J, Hu R R, Sun J Z, Tang B Z. J. Am. Chem. Soc., 2011, 133(4): 660.
[175]
Tian R, Xu S M, Xu Q, Lu C. Sci. Adv., 2020, 6(21): eaaz6107.
[176]
Cai S Z, Ma H L, Shi H F, Wang H, Wang X A, Xiao L X, Ye W P, Huang K W, Cao X D, Gan N, Ma C Q, Gu M X, Song L L, Xu H, Tao Y T, Zhang C F, Yao W, An Z F, Huang W. Nat. Commun., 2019, 10: 4247.
[177]
Hirata S, Totani K, Zhang J X, Yamashita T, Kaji H, Marder S R, Watanabe T, Adachi C. Adv. Funct. Mater., 2013, 23(27): 3386.
[178]
Liu B, Deng X R, Xie Z X, Cheng Z Y, Yang P P, Lin J. Adv. Mater., 2017, 29(36): 1604878.
[179]
Zhang T T, Wang X, An Z F, Fang Z W, Zhang Y M, Yuan W Z. ChemPhysChem, 2018, 19(18): 2389.
[180]
Mao Z, Yang Z, Fan Z G, Ubba E, Li W L, Li Y, Zhao J A, Yang Z Y, Aldred M P, Chi Z G. Chem. Sci., 2019, 10(1): 179.
[181]
Yang J E, Ren Z C, Chen B, Fang M M, Zhao Z J, Tang B Z, Peng Q A, Li Z. J. Mater. Chem. C, 2017, 5(36): 9242.
[182]
Gu M X, Shi H F, Ling K, Lv A Q, Huang K W, Singh M, Wang H, Gu L, Yao W, An Z F, Ma H L, Huang W. Research, 2020, 2020: 8183450.
[183]
An Z F, Zheng C, Tao Y, Chen R F, Shi H F, Chen T, Wang Z X, Li H H, Deng R R, Liu X G, Huang W. Nat. Mater., 2015, 14(7): 685.
[184]
Hamzehpoor E, Ruchlin C, Tao Y Z, Ramos-Sanchez J E, Titi H M, Cosa G, Perepichka D F. J. Phys. Chem. Lett., 2021, 12(27): 6431.
[185]
Wu X G, Huang C Y, Chen D G, Liu D H, Wu C C, Chou K J, Zhang B, Wang Y F, Liu Y, Li E Y, Zhu W G, Chou P T. Nat. Commun., 2020, 11: 2145.
[186]
Wen Y T, Liu H C, Zhang S T, Gao Y, Yan Y, Yang B. J. Mater. Chem. C, 2019, 7(40): 12502.
[187]
Ono T, Kimura K, Ihara M, Yamanaka Y, Sasaki M, Mori H, Hisaeda Y. Chem. A Eur. J., 2021, 27(37): 9535.
[188]
Turro N J, Lru K C, Chow M F, Lee P. Photochem. Photobiol., 1978, 27(5): 523.
[189]
Su Q, Gan L L, Yang X M. Appl. Surf. Sci., 2021, 566: 150726.
[190]
Liang Y C, Gou S S, Liu K K, Wu W J, Guo C Z, Lu S Y, Zang J H, Wu X Y, Lou Q, Dong L, Gao Y F, Shan C X. Nano Today, 2020, 34: 100900.
[191]
Zhang X F, Zhang B B, Luo J, Guo S, Wei C, Gong Y Y. Front. Chem., 2022, 9: 810458.
[192]
Kaspar C, Ravoo B J, van der Wiel W G, Wegner S V, Pernice W H P. Nature, 2021, 594(7863): 345.
[193]
Fedik N, Zubatyuk R, Kulichenko M, Lubbers N, Smith J S, Nebgen B, Messerly R, Li Y W, Boldyrev A I, Barros K, Isayev O, Tretiak S. Nat. Rev. Chem., 2022, 6(9): 653.

Funding

National Natural Science Foundation of China(21574068)
Major Research Program from the State Ministry of Science and Technology,(2012CB933301)
Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
Priority Academic Program Development of Jiangsu Higher Education Institutions(YX030003)
Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunication(GZR2023010056)
PDF(28902 KB)

Accesses

Citation

Detail

Sections
Recommended

/