Application of Advanced Artificial Intelligence Technology in New Drug Discovery

Zhonghua Wang, Yichu Wu, Zhongshan Wu, Ranran Zhu, Yang Yang, Fanhong Wu

Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1505-1518.

PDF(15248 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(15248 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1505-1518. DOI: 10.7536/PC230318
Review

Application of Advanced Artificial Intelligence Technology in New Drug Discovery

Author information +
History +

Abstract

In recent years, the discovery of new drugs driven by advanced artificial intelligence (AI) has attracted much attention. Advanced artificial intelligence algorithms (machine learning and deep learning) have been gradually applied in various scenarios of new drug discovery, such as representation learning task (molecular descriptor), prediction task (drug target binding affinity prediction, crystal structure prediction and molecular basic properties prediction) and generation task (molecular conformation generation and drug molecular generation). This technology can significantly reduce the cost and time of new drug development, improve the efficiency of drug development, and reduce the costs and risks associated with preclinical and clinical trials. This review summarizes the application of advanced artificial intelligence technology in new drug discovery in recent years, to help understand the research progress and future development trend in this field, and to facilitate the discovery of innovative drugs.

Contents

1 Introduction

2 Artificial intelligence

2.1 Convolutional neural network

2.2 Recurrent neural network

2.3 Graph neural network

2.4 Generative adversarial network

2.5 Variational auto encoder

2.6 Diffusion model

2.7 Transformer model

3 The application of artificial intelligence in drug discovery

3.1 Data resources and open-source tools

3.2 Artificial intelligence technology drives molecular representation learning tasks

3.3 Artificial intelligence technology drives predictive tasks

3.4 Artificial intelligence technology drives generation tasks

4 Conclusion and outlook

Key words

artificial intelligence / new drug discovery / deep learning / representation learning / task application

Cite this article

Download Citations
Zhonghua Wang , Yichu Wu , Zhongshan Wu , et al . Application of Advanced Artificial Intelligence Technology in New Drug Discovery[J]. Progress in Chemistry. 2023, 35(10): 1505-1518 https://doi.org/10.7536/PC230318

References

[1]
DiMasi J A, Grabowski H G, Hansen R W. J. Health Econ., 2016, 47: 20.
[2]
Reddy A S, Zhang S X. Expert Rev. Clin. Pharmacol., 2013, 6(1): 41.
[3]
Sachdev K, Gupta M K. J. Biomed. Inform., 2019, 93: 103159.
[4]
Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M, Zhao S R. Nat. Rev. Drug Discov., 2019, 18(6): 463.
[5]
Kimber T B, Chen Y H, Volkamer A. Int. J. Mol. Sci., 2021, 22(9): 4435.
[6]
Lipinski C F, Maltarollo V G, Oliveira P R, da Silva A B F, Honorio K M. Front. Robot. AI, 2019, 6: 108.
[7]
Rifaioglu A S, Atas H, Martin M J, Cetin-Atalay R, Atalay V, Doğan T. Brief Bioinform, 2019, 20(5): 1878.
[8]
Ivanenkov Y A, Polykovskiy D, Bezrukov D, Zagribelnyy B, Aladinskiy V, Kamya P, Aliper A, Ren F, Zhavoronkov A. J. Chem. Inf. Model., 2023, 63(3): 695.
[9]
Janiesch C, Zschech P, Heinrich K. Electron. Mark., 2021, 31(3): 685.
[10]
Wang M Z, Wang B, He Q, Liu X X, Zhu K S. arXiv preprint arXiv: 1505.06561, 2015.
[11]
LeCun Y, Bengio Y, Hinton G. Nature, 2015, 521(7553): 436.
[12]
Simm J, Klambauer G, Arany A, Steijaert M, Wegner J K, Gustin E, Chupakhin V, Chong Y T, Vialard J, Buijnsters P, Velter I, Vapirev A, Singh S, Carpenter A E, Wuyts R, Hochreiter S, Moreau Y, Ceulemans H. Cell Chem. Biol., 2018, 25(5): 611.
[13]
Hofmarcher M, Rumetshofer E, Clevert D A, Hochreiter S, Klambauer G. J. Chem. Inf. Model., 2019, 59(3): 1163.
[14]
Ramsundar B, Kearnes S, Riley P, Webster D, Konerding D, Pande V. arXiv preprint arXiv: 1502.02072, 2015.
[15]
Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, G’omez-Bombarelli R, Hirzel T, Aspuru-Guzik A, P. Adams R. arXiv preprint arXiv: 1509.09292, 2015.
[16]
Goh G B, Siegel C, Vishnu A, Hodas N O, Baker N. arXiv preprint arXiv: 1706.06689, 2017.
[17]
Chen M Y, Chiang H S, Sangaiah A K, Hsieh T C. Neural Comput. Appl., 2020, 32(12): 7915.
[18]
Hochreiter S, Schmidhuber J. Neural Comput., 1997, 9(8): 1735.
[19]
Chung J, Gulcehre C, Cho K, Bengio K. arXiv preprint arXiv: 1412.3555, 2014.
[20]
Goh G B, Hodas N O, Siegel C, Vishnu A. arXiv preprint arXiv: 1712.02034, 2017.
[21]
Mayr A, Klambauer G, Unterthiner T, Steijaert M, Wegner J K, Ceulemans H, Clevert D A, Hochreiter S. Chem. Sci., 2018, 9(24): 5441.
[22]
Wu Z H, Pan S R, Chen F W, Long G D, Zhang C Q, Yu P S. IEEE Trans. Neural Netw. Learn. Syst., 2021, 32(1): 4.
[23]
Schütt K T, Kindermans P J, Sauceda H E, Chmiela S, Tkatchenko A, Müller K R. arXiv preprint arXiv: 1706.08566, 2017.
[24]
Feinberg E N, Sur D, Wu Z Q, Husic B E, Mai H H, Li Y, Sun S S, Yang J Y, Ramsundar B, Pande V S. ACS Cent. Sci., 2018, 4(11): 1520.
[25]
Gasteiger J, Grob J, Günnemann S. arXiv preprint arXiv:2003.03123, 2020.
[26]
Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014, 2672.
[27]
Guimaraes G L, Sanchez-Lengeling B, Outerial C, Farias P L C, Aspuru-Guzik A. arXiv preprint arXiv: 1705.10843, 2017.
[28]
Sanchez-Lengeling B, Outeiral C, Guimaraes G L, Aspuru-Guzik A. chemRxiv preprint: 10.26434/chemrxiv.5309668.v3, 2017.
[29]
Kingma D P, Welling M. arXiv preprint arXiv: 1312.6114, 2013.
[30]
Kingma D P, Welling M. Found. Trends® Mach. Learn., 2019, 12(4): 307.
[31]
Kusner M J, Paige B, Hernández-Lobato J M. International Conference on Machine Learning. PMLR, 2017, 1945.
[32]
Dai H J, Tian Y T, Dai B, Skiena S, Song L. arXiv preprint arXiv: 1802.08786, 2018.
[33]
Saharia C, Chan W, Chang H, Lee C A, Ho J, Salimas T, Fleet D J, Norouzi M. arXiv preprint arXiv: 2111.05826, 2021.
[34]
Hoogeboom E, Satorras V G, Vignac C, Welling M. International Conference on Machine Learning. PMLR, 2022: 8867.
[35]
Luo S, Su Y, Peng X, Wang S, Peng J, Ma J. bioRxiv, 2022, 10.499510.
[36]
Tachibana H, Go M, Inahara M, Katayama Y, Watanabe Y. arXiv preprint arXiv: 2112.13339, 2021.
[37]
Watson J L, Juergens D, Bennett N R, Trippe B L, Yim J, Eisenach H E, Ahern W, Borst A J, Ragotte R J, Milles L F, Wicky B I M, Hanikel N, Pellock S J, Courbet A, Sheffler W, Wang J, Venkatesh P, Sappington I, Torres S V, Lauko A, De Bortoli V, Mathieu E, Ovchinnikov S, Barzilay R, Jaakkola T S, DiMaio F, Baek M, Baker D. Nature, 2023, 620: 1089.
[38]
Yeh A H W, Norn C, Kipnis Y, Tischer D, Pellock S J, Evans D, Ma P C, Lee G R, Zhang J Z, Anishchenko I, Coventry B, Cao L X, Dauparas J, Halabiya S, DeWitt M, Carter L, Houk K N, Baker D. Nature, 2023, 614(7949): 774.
[39]
Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R, Funtowicz M, Davison J, Shleifer S, Platen P, Ma C, Jernite Y, Plu J, Xu C W, Scao T L, Gugger S, Drame M, Lhoest Q, Rush A M. arXiv preprint arXiv: 1910.03771, 2019.
[40]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, Polosukhin I. arXiv preprint arXiv: 1706.03762, 2017.
[41]
Radford A, Narasimhan K, Salimans T, Sutskever I. OpenAI: https://openai.com/blog/language-unsupervised/, 2018.
[42]
Devlin J, Chang M W, Lee K, Toutanova. Proceedings of NAACL-HLT, 2019, 4171-4186.
[43]
Thorp H H. Science, 2023, 379(6630): 313.
[44]
OpenAI. arXiv preprint arXiv: 2303.08774, 2023.
[45]
Wang S, Guo Y Z, Wang Y H, Sun H M, Huang J Z. Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Niagara Falls NY USA. New York, NY, USA: ACM, 2019, 429.
[46]
Honda S, Shi S, Ueda H R. arXiv preprint arXiv: 1911.04738, 2019.
[47]
Kim S, Chen J, Cheng T J, Gindulyte A, He J, He S Q, Li Q L, Shoemaker B A, Thiessen P A, Yu B, Zaslavsky L, Zhang J, Bolton E E. Nucleic Acids Res., 2021, 49(D1): D1388.
[48]
Gaulton A, Hersey A, Nowotka M, Bento A P, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis L J, Cibrián-Uhalte E, Davies M, Dedman N, Karlsson A, Magariños M P, Overington J P, Papadatos G, Smit I, Leach A R. Nucleic Acids Res., 2017, 45(D1): D945.
[49]
Irwin J J, Tang K G, Young J, Dandarchuluun C, Wong B R, Khurelbaatar M, Moroz Y S, Mayfield J, Sayle R A. J. Chem. Inf. Model., 2020, 60(12): 6065.
[50]
Schneider N, Sayle R A, Landrum G A. J. Chem. Inf. Model., 2015, 55(10): 2111.
[51]
Ramsundar B, Eastman P, Walters P, Pande V. Drug Discovery and More. 1st ed. CA; O’Reilly Media: Sebastopol, 2019.
[52]
Schneider N, Fechner N, Landrum G A, Stiefl N. J. Chem. Inf. Model., 2017, 57(8): 1816.
[53]
Czodrowski P, Bolick W G. J. Chem. Inf. Model., 2016, 56(10): 2013.
[54]
Xue L, Bajorath J. Comb. Chem. High Throughput Screen., 2000, 3(5): 363.
[55]
Redkar S, Mondal S, Joseph A, Hareesha K S. Mol. Inform., 2020, 39(5): 1900062.
[56]
Rifaioglu A S, Nalbat E, Atalay V, Martin M J, Cetin-Atalay R, Doğan T. Chem. Sci., 2020, 11(9): 2531.
[57]
Stokes J M, Yang K, Swanson K, Jin W G, Cubillos-Ruiz A, Donghia N M, MacNair C R, French S, Carfrae L A, Bloom-Ackermann Z, Tran V M, Chiappino-Pepe A, Badran A H, Andrews I W, Chory E J, Church G M, Brown E D, Jaakkola T S, Barzilay R, Collins J J. Cell, 2020, 181(2): 475.
[58]
Shin B, Park S, Kang K, C. Ho J. arXiv preprint arXiv: 1908.06760, 2019.
[59]
Öztürk H, Özgür A, Ozkirimli E. Bioinformatics, 2018, 34(17): i821.
[60]
Abnousi A, Broschat S L, Kalyanaraman A. BMC Bioinform., 2018, 19(1): 83.
[61]
Lee I, Keum J, Nam H. PLoS Comput. Biol., 2019, 15(6): e1007129.
[62]
Zhao Q, Xing F, Tao Y Y, Liu H L, Huang K, Peng Y, Feng N P, Liu C H. Front. Pharmacol., 2020, 11: 1.
[63]
Gao K F, Nguyen D D, Sresht V, Mathiowetz A M, Tu M H, Wei G W. Phys. Chem. Chem. Phys., 2020, 22(16): 8373.
[64]
Wang Y B, You Z H, Yang S, Yi H C, Chen Z H, Zheng K. BMC Med. Inform. Decis. Mak., 2020, 20(2): 49.
[65]
David L, Thakkar A, Mercado R, Engkvist O. J. Cheminformatics, 2020, 12(1): 56.
[66]
Bian Y, Xie X Q. J. Chem. Inf. Model., 2021, 27(3): 1.
[67]
Xiong Z P, Wang D Y, Liu X H, Zhong F S, Wan X Z, Li X T, Li Z J, Luo X M, Chen K X, Jiang H L, Zheng M Y. J. Med. Chem., 2020, 63(16): 8749.
[68]
Ren T, Zhang H D, Shi Y, Luo X M, Zhou S Q. J. Mol. Graph. Model., 2023, 119: 108401.
[69]
Liu Y W, Zhang R S, Li T F, Jiang J, Ma J, Wang P. J. Mol. Graph. Model., 2023, 118: 108344.
[70]
Vipul M, Karoline B, Rafiqul G, Venkat V. Fluid Phase Equilib., 2022, 561: 113531.
[71]
Lv Q J, Chen G X, Zhao L, Zhong W H, Chen C Y C. Brief Bioinform., 2021, 22(6): bbab317.
[72]
Ji Z W, Shi R H, Lu J R, Li F, Yang Y. J. Chem. Inf. Model., 2022, 62(22): 5361.
[73]
Vázquez J, LÓpez M, Gibert E, Herrero E, Luque F J. Molecules, 2020, 25(20): 4723.
[74]
Yuan W, Chen G, Chen C Y C. Briefings Bioinf., 2022, 23(1): bbab506.
[75]
Shao K H, Zhang Y H, Wen Y Q, Zhang Z N, He S, Bo X C. Brief Bioinform., 2022, 23(3): bbac109.
[76]
Li F, Zhang Z Q, Guan J H, Zhou S G. Bioinformatics, 2022, 38(14): 3582.
[77]
Gardner C R, Walsh C T, Almarsson Ö. Nat. Rev. Drug Discov., 2004, 3(11): 926.
[78]
Tung H H. Org. Process Res. Dev., 2013, 17(3): 445.
[79]
Waknis V, Chu E, Schlam R, Sidorenko A, Badawy S, Yin S, Narang A S. Pharm. Res., 2014, 31(1): 160.
[80]
Dandekar P, Kuvadia Z B, Doherty M F. Annu. Rev. Mater. Res., 2013, 43: 359.
[81]
Sun G X, Liu X T, Abramov Y A, Nilsson Lill S O, Chang C, Burger V, Broo A. Cryst. Growth Des., 2021, 21(4): 1972.
[82]
Bhardwaj R M, Johnston A, Johnston B F, Florence A J. CrystEngComm, 2015, 17(23): 4272.
[83]
Wicker J G P, Cooper R I. CrystEngComm, 2015, 17(9): 1927.
[84]
Pillong M, Marx C, Piechon P, Wicker J G P, Cooper R I, Wagner T. CrystEngComm, 2017, 19(27): 3737.
[85]
Yang M J, Dybeck E, Sun G X, Peng C W, Samas B, Burger V M, Zeng Q, Jin Y D, Bellucci M A, Liu Y, Zhang P Y, Ma J, Alan Jiang Y, Hancock B C, Wen S H, Wood G P F. Cryst. Growth Des., 2020, 20(8): 5211.
[86]
Wilkinson M R, Martinez-Hernandez U, Huggon L K, Wilson C C, Castro Dominguez B. CrystEngComm, 2022, 24(43): 7545.
[87]
Mater A C, Coote M L. J. Chem. Inf. Model., 2019, 59(6): 2545.
[88]
Wu Z Q, Ramsundar B, Feinberg E N, Gomes J, Geniesse C, Pappu A S, Leswing K, Pande V. Chem. Sci., 2018, 9(2): 513.
[89]
Jiang J, Zhang R S, Yuan Y N, Li T F, Li G L, Zhao Z L, Yu Z X. J. Mol. Graph. Model., 2023, 121: 108454.
[90]
Li C Y, Feng J H, Liu S H, Yao J F. Comput. Intell. Neurosci., 2022, 2022: 8464452.
[91]
Maziarka Ł, Danel T, Mucha S, Rataj K, Tabor J, Jastrzębski S. arXiv preprint arXiv: 2002.08264, 2020.
[92]
Liu H, Huang Y B, Liu X J, Deng L. Brief. Bioinform., 2022, 23(5): bbac303.
[93]
Liu C Y, Sun Y, Davis R, Cardona S T, Hu P Z. J. Cheminformatics, 2023, 15(1): 29.
[94]
Hawkins P C D. J. Chem. Inf. Model., 2017, 57(8): 1747.
[95]
Zhou G M, Gao Z F, Wei Z W, Zheng H, Ke G L. arXiv preprint arXiv: 2302.07061, 2023.
[96]
Mansimov E, Mahmood O, Kang S, Cho K. Sci. Rep., 2019, 9: 20381.
[97]
Xu M K, Luo S T, Bengio Y, Peng J, Tang J. arXiv preprint arXiv: 2102.10240, 2021.
[98]
Xu M K, Wang W J, Luo S T, Shi C, Bengio Y, Gomez-Bombarelli R, Tang J. International Conference on Machine Learning. PMLR, 2021: 11537-11547.
[99]
Zhu J H, Xia Y C, Liu C, Wu L J, Xie S F, Wang T, Wang Y S, Zhou W G, Qin T, Li H Q, Liu T Y. arXiv preprint arXiv: 2202.01356, 2022.
[100]
Xu M K, Yu L T, Song Y, Shi C, Ermon S, Tang J. arXiv preprint arXiv: 2203.02923, 2022.
[101]
Polishchuk P G, Madzhidov T I, Varnek A. J. Comput. Aided Mol. Des., 2013, 27(8): 675.
[102]
Kim S, Thiessen P A, Bolton E E, Chen J, Fu G, Gindulyte A, Han L Y, He J, He S Q, Shoemaker B A, Wang J Y, Yu B, Zhang J, Bryant S H. Nucleic Acids Res., 2016, 44(D1): D1202.
[103]
Segler M H S, Kogej T, Tyrchan C, Waller M P. ACS Cent. Sci., 2018, 4(1): 120.
[104]
Yang Y X, Zhang R K, Li Z J, Mei L H, Wan S L, Ding H, Chen Z F, Xing J, Feng H J, Han J, Jiang H L, Zheng M Y, Luo C, Zhou B. J. Med. Chem., 2020, 63(3): 1337.
[105]
Bagal V, Aggarwal R, Vinod P K, Priyakumar U D. chemRxiv preprint: 10.26434/chemrxiv.14561901.v1, 2021.
[106]
Bagal V, Aggarwal R, Vinod P K, Deva Priyakumar U. J. Chem. Inf. Model., 2022, 62(9): 2064.
[107]
Wang W L, Wang Y, Zhao H G, Sciabola S. arXiv preprint arXiv: 2210.08749, 2022.
[108]
You J X, Liu B W, Ying R, Pande V, Leskovec J. arXiv preprint arXiv: 1806.02473, 2018.
[109]
Samanta B, De A, Jana G, Chattaraj P K, Ganguly N, Gomez-Rodriguez M. arXiv preprint arXiv: 1802.05283, 2018.
[110]
Li X S, Liu X, Lu L, Hua X S, Chi Y, Xia K L. Brief Bioinform., 2022, 23(4): bbac231.

Funding

National Natural Science Foundation of China(21672151)
National Natural Science Foundation of China(21602136)
PDF(15248 KB)

Accesses

Citation

Detail

Sections
Recommended

/