Advances and Challenges of Low-Temperature Electrolyte for Sodium-Ion Batteries

Guangxiang Zhang, Chi Ma, Chuankai Fu, Ziwei Liu, Hua Huo, Yulin Ma

Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1534-1543.

PDF(6967 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6967 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1534-1543. DOI: 10.7536/PC230319
Review

Advances and Challenges of Low-Temperature Electrolyte for Sodium-Ion Batteries

Author information +
History +

Abstract

Sodium-ion batteries have attracted ever-increasing attention in the fields of low-speed electric vehicles, and large-scale energy storage systems due to the advantages of abundant resources, low cost, high safety, and environmental friendliness. As one of the important components of sodium-ion batteries, the electrolyte is responsible for ion transfer between the cathode and the anode, which has a significant impact on cycle life, high-rate, safety, and self-discharge performance of sodium-ion batteries. However, it is difficult for sodium-ion batteries to perform well at low temperatures due to the decrease in ionic conductivity, the poor compatibility between the electrolyte and the electrode, the increase of desolvating power, and the poor properties of the electrode/electrolyte interphase. In this paper, the new understanding of the Na+ solvation structure in the electrolyte and the electrode/electrolyte interphase in recent years are summarized. And the design strategies of low-temperature electrolyte based on H-bond network breakdown, weak solvation, rapid reaction kinetics, and anion intervention are systematically analyzed. Finally, it is pointed out that the key to improving the low-temperature performance of sodium-ion batteries from the perspective of electrolyte is to understand the relationship between the Na+ solvation structure, the electrode/electrolyte interface properties, and the low-temperature performance of electrolyte.

Contents

1 Introduction

2 Working principle of sodium-ion batteries and limitation of low-temperature performance of the electrolyte

3 Research status of low-temperature electrolyte for sodium-ion batteries

3.1 Design strategies of low-temperature electrolyte based on the H-bond network breaking method

3.2 Design strategies of low-temperature electrolyte based on weakly solvating

3.3 Design strategies of low-temperature electrolyte based on rapid reaction kinetics

3.4 Design strategies of low-temperature electrolyte based on anionic intervention

3.5 Others

4 Conclusion and outlook

Key words

sodium-ion batteries / electrolyte / low-temperature / electrode/electrolyte interphase / solvation structure

Cite this article

Download Citations
Guangxiang Zhang , Chi Ma , Chuankai Fu , et al . Advances and Challenges of Low-Temperature Electrolyte for Sodium-Ion Batteries[J]. Progress in Chemistry. 2023, 35(10): 1534-1543 https://doi.org/10.7536/PC230319

References

[1]
Sawicki M, Shaw L L. RSC Adv., 2015, 5(65): 53129.
[2]
Che H Y, Chen S L, Xie Y Y, Wang H, Amine K, Liao X Z, Ma Z F. Energy Environ. Sci., 2017, 10(5): 1075.
[3]
Yin C G, Ma Y L, Cheng X Q, Yin G P. Prog. Chem., 2013, 25(1): 54.
(尹成果, 马玉林, 程新群, 尹鸽平. 化学进展, 2013, 25(1): 54.).
[4]
Zhang L L, Ma Y L, Du C Y, Yin G P. Progress in Chemistry, 2014, 26 (4): 553.
(张玲玲, 马玉林, 杜春雨, 尹鸽平. 化学进展, 2014, 26 (4): 553.).
[5]
Li H, Wu C, Wu F, Bai Y. Acta Chim. Sinica., 2014, 72(01): 21.
(李慧, 吴川, 吴锋, 白莹. 化学学报, 2014, 72(01): 21.).
[6]
Lu Y, Zhao C L, Rong X H, Chen L Q, Hu Y S. Acta Phys. Sin., 2018, 67(12): 39.
(陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜. 物理学报, 2018, 67(12): 39.).
[7]
Wang Y M, Song S F, Xu C H, Hu N, Molenda J, Lu L. Nano Mater. Sci., 2019, 1(2): 91.
[8]
Guo X Y, Wang Z B, Deng Z, Wang B, Chen X, Ong S P. Chem. Mater., 2020, 32(16): 6875.
[9]
Vignarooban K, Kushagra R, Elango A, Badami P, Mellander B E, Xu X, Tucker T G, Nam C, Kannan A M. Int. J. Hydrog. Energy, 2016, 41(4): 2829.
[10]
Li P Y, Hu N Q, Wang J Y, Wang S C, Deng W W. Nanomaterials, 2022, 12(19): 3529.
[11]
Rodrigues M T F, Babu G, Gullapalli H, Kalaga K, Sayed F N, Kato K, Joyner J, Ajayan P M. Nat. Energy, 2017, 2(8): 17108.
[12]
Gupta A, Manthiram A. Adv. Energy Mater., 2020, 10(38): 2001972.
[13]
Feng Y, Zhou L M, Ma H A, Wu Z H, Zhao Q, Li H X, Zhang K, Chen J. Energy Environ. Sci., 2022, 15(5): 1711.
[14]
Pan H L, Hu Y S, Chen L Q. Energy Environ. Sci., 2013, 6(8): 2338.
[15]
Yin H, Han C J, Liu Q R, Wu F Y, Zhang F, Tang Y B. Small, 2021, 17(31): e2006627.
[16]
Li Y, Wu F, Li Y, Liu M Q, Feng X, Bai Y, Wu C A. Chem. Soc. Rev., 2022, 51(11): 4484.
[17]
Peljo P, Girault H H. Energy Environ. Sci., 2018, 11(9): 2306.
[18]
Eshetu G G, Elia G A, Armand M, Forsyth M, Komaba S, Rojo T, Passerini S. Adv. Energy Mater., 2020, 10(20): 2000093.
[19]
Wang M, Wang Q C, Ding X Y, Wang Y S, Xin Y H, Singh P, Wu F, Gao H C. Interdiscip. Mater., 2022, 1(3): 373.
[20]
Jaguemont J, Boulon L, DubÉ Y. Appl. Energy, 2016, 164: 99.
[21]
Zhao Y W, Chen Z, Mo F N, Wang D H, Guo Y, Liu Z X, Li X L, Li Q, Liang G J, Zhi C Y. Adv. Sci., 2021, 8(1): 2002590.
[22]
Zheng X Y, Gu Z Y, Fu J, Wang H T, Ye X L, Huang L Q, Liu X Y, Wu X L, Luo W, Huang Y H. Energy Environ. Sci., 2021, 14(9): 4936.
[23]
Yoo D J, Liu Q A, Cohen O, Kim M, Persson K A, Zhang Z C. ACS Appl. Mater. Interfaces, 2022, 14(9): 11910.
[24]
Pan K H, Lu H Y, Zhong F P, Ai X P, Yang H X, Cao Y L. ACS Appl. Mater. Interfaces, 2018, 10(46): 39651.
[25]
Xu K. Chem. Rev., 2004, 104(10): 4303.
[26]
Ponrouch A, Marchante E, Courty M, Tarascon J M, Palacín M R. Energy Environ. Sci., 2012, 5(9): 8572.
[27]
Yang M R, Luo J, Guo X N, Chen J C, Cao Y L, Chen W H. Batteries, 2022, 8(10): 180.
[28]
Bin D A, Wang F, Tamirat A G, Suo L M, Wang Y G, Wang C S, Xia Y Y. Adv. Energy Mater., 2018, 8(17): 1703008.
[29]
Errougui A, Lahmidi A, Chtita S, El Kouali M, Talbi M. J. Solut. Chem., 2023, 52(2): 176.
[30]
Nian Q S, Wang J Y, Liu S A, Sun T J, Zheng S B, Zhang Y, Tao Z L, Chen J. Angew. Chem. Int. Ed., 2019, 131(47): 17150.
[31]
Jiang P, Lei Z Y, Chen L A, Shao X C, Liang X M, Zhang J, Wang Y C, Zhang J J, Liu Z P, Feng J W. ACS Appl. Mater. Interfaces, 2019, 11(32): 28762.
[32]
Zhu K J, Sun Z Q, Li Z P, Liu P, Chen X C, Jiao L F. Energy Storage Mater., 2022, 53: 523.
[33]
Zhu K J, Li Z P, Sun Z Q, Liu P, Jin T, Chen X C, Li H X, Lu W B, Jiao L F. Small, 2022, 18(14): 2107662.
[34]
Cheng Y B, Chi X W, Yang J H, Liu Y. J. Energy Storage, 2021, 40: 102701.
[35]
Yao Y X, Chen X A, Yan C, Zhang X Q, Cai W L, Huang J Q, Zhang Q A. Angew. Chem. Int. Ed., 2021, 60(8): 4090.
[36]
Ma T, Ni Y X, Wang Q R, Zhang W J, Jin S, Zheng S B, Yang X A, Hou Y P, Tao Z L, Chen J. Angew. Chem. Int. Ed., 2022, 61(39): e202207927.
[37]
Cohn A P, Share K, Carter R, Oakes L, Pint C L. Nano Lett., 2016, 16(1): 543.
[38]
Kim H, Hong J, Park Y U, Kim J, Hwang I, Kang K. Adv. Funct. Mater., 2015, 25(4): 534.
[39]
Su D W, Kretschmer K, Wang G X. Adv. Energy Mater., 2016, 6(2): 1501785.
[40]
Lai P B, Huang B Y, Deng X D, Li J L, Hua H M, Zhang P, Zhao J B. Chem. Eng. J., 2023, 461: 141904.
[41]
Zhang J, Wang D W, Lv W, Qin L, Niu S Z, Zhang S W, Cao T F, Kang F Y, Yang Q H. Adv. Energy Mater., 2018, 8(26): 1801361.
[42]
Smart M C, Ratnakumar B V, Chin K B, Whitcanack L D. J. Electrochem. Soc., 2010, 157(12): A1361.
[43]
Tang Z, Wang H, Wu P F, Zhou S Y, Huang Y C, Zhang R, Sun D, Tang Y G, Wang H Y. Angew. Chem. Int. Ed., 2022, 61(18): e202200475.
[44]
Wang Z Q, Zheng X Y, Liu X Y, Huang Y Y, Huang L Q, Chen Y W, Han M, Luo W. ACS Appl. Mater. Interfaces, 2022, 14(36): 40985.
[45]
Smart M C, Ratnakumar B V, Behar A, Whitcanack L D, Yu J S, Alamgir M. J. Power Sources, 2007, 165(2): 535.
[46]
Deng L, Goh K, Yu F D, Xia Y, Jiang Y S, Ke W, Han Y, Que L F, Zhou J, Wang Z B. Energy Storage Mater., 2022, 44: 82.
[47]
Zheng Y Q, Sun M Y, Yu F D, Deng L, Xia Y, Jiang Y S, Que L F, Zhao L, Wang Z B. Nano Energy, 2022, 102: 107693.
[48]
Liu Q, Xu R G, Mu D B, Tan G Q, Gao H C, Li N, Chen R J, Wu F. Carbon Energy, 2022, 4(3): 458.
[49]
Wang D N, Du X Q, Zhang B A. Small Struct., 2022, 3(10): 2200078.
[50]
Castillo-Martínez E, Carretero-González J, Armand M. Angew. Chem. Int. Ed., 2014, 53(21): 5341.
[51]
Yin X P, Zhao Y F, Zhang J J. J. Electrochem., 2023, 1.
(殷秀平, 赵玉峰, 张久俊. 电化学, 2023, 1.).
[52]
Chen J W, Peng Y, Yin Y E, Fang Z, Cao Y J, Wang Y G, Dong X L, Xia Y Y. Angew. Chem. Int. Ed., 2021, 60(44): 23858.
[53]
Subramanyan K, Akshay M, Lee Y S, Aravindan V. Adv. Mater. Technol., 2022, 7(12): 2200399.
[54]
Jache B, Binder J O, Abe T, Adelhelm P. Phys. Chem. Chem. Phys., 2016, 18(21): 14299.
[55]
Sun M Y, Yu F D, Xia Y, Deng L, Jiang Y S, Que L F, Zhao L, Wang Z B. Chem. Eng. J., 2022, 430: 132750.
[56]
Li Z, Zhang Y, Zhang J H, Cao Y J, Chen J W, Liu H M, Wang Y G. Angew. Chem. Int. Ed., 2022, 61(13): e202116930.
[57]
Zheng X Y, Cao Z, Luo W, Weng S T, Zhang X L, Wang D H, Zhu Z L, Du H R, Wang X F, Qie L, Zheng H H, Huang Y H. Adv. Mater., 2023, 35(10): 2210115.
[58]
Hu A J, Chen W, Du X C, Hu Y, Lei T Y, Wang H B, Xue L X, Li Y Y, Sun H, Yan Y C, Long J P, Shu C Z, Zhu J, Li B H, Wang X F, Xiong J E. Energy Environ. Sci., 2021, 14(7): 4115.
[59]
Song X N, Meng T, Deng Y M, Gao A M, Nan J M, Shu D, Yi F Y. Electrochim. Acta, 2018, 281: 370.
[60]
Xia X M, Xu S T, Tang F, Yao Y, Wang L F, Liu L, He S N, Yang Y X, Sun W P, Xu C, Feng Y Z, Pan H G, Rui X H, Yu Y. Adv. Mater., 2023, 35(11): 2209511.
[61]
Jiang L W, Liu L L, Yue J M, Zhang Q Q, Zhou A X, Borodin O, Suo L M, Li H, Chen L Q, Xu K, Hu Y S. Adv. Mater., 2020, 32(2): e1904427.
[62]
Pahari D, Puravankara S. ACS Sustain. Chem. Eng., 2020, 8(29): 10613.
[63]
Reber D, Kühnel R S, Battaglia C. ACS Mater. Lett., 2019, 1(1): 44.
[64]
Reber D, Takenaka N, Kühnel R S, Yamada A, Battaglia C. J. Phys. Chem. Lett., 2020, 11(12): 4720.
[65]
Thenuwara A C, Shetty P P, Kondekar N, Wang C L, Li W Y, McDowell M T. J. Mater. Chem. A, 2021, 9(17): 10992.
[66]
Yu Z X, Shang S L, Seo J H, Wang D W, Luo X Y, Huang Q Q, Chen S R, Lu J, Li X L, Liu Z K, Wang D H. Adv. Mater., 2017, 29(16): 1605561.
[67]
Cai S, Meng W D, Tian H Q, Luo T T, Wang L, Li M, Luo J Y, Liu S. J. Colloid Interface Sci., 2023, 632: 179.
[68]
Pan J, Xu S M, Cai T X, Hu L L, Che X L, Dong W J, Shi Z Y, Rai A K, Wang N N, Huang F Q, Dou S X. Nano Lett., 2023, 23(8): 3630.
[69]
Lu Y, Alonso J A, Yi Q, Lu L, Wang Z L, Sun C W. Adv. Energy Mater., 2019, 9(28): 1901205.
[70]
Fertig M P, Skadell K, Schulz M, Dirksen C, Adelhelm P, Stelter M. Batter. Supercaps, 2022, 5(1): e202100131.
[71]
Li Z, Yu R, Weng S T, Zhang Q H, Wang X F, Guo X. Nat. Commun., 2023, 14: 482.
[72]
Du G Y, Tao M L, Li J E, Yang T T, Gao W, Deng J H, Qi Y R, Bao S J, Xu M W. Adv. Energy Mater., 2020, 10(5): 1903351.
[73]
Yang J F, Zhang M, Chen Z, Du X F, Huang S Q, Tang B, Dong T T, Wu H, Yu Z, Zhang J J, Cui G L. Nano Res., 2019, 12(9): 2230.

Funding

National Natural Science Foundation of China(22075064)
China Postdoctoral Science Foundation(2022M710950)
PDF(6967 KB)

Accesses

Citation

Detail

Sections
Recommended

/