Modified Nafion Membrane in Vanadium Redox Flow Battery

Yang Haoling, Xu Kunyu, Zhang Qi, Tao Liang, Yang Zihao, Dong Zhaoxia

Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1595-1612.

PDF(14003 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(14003 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1595-1612. DOI: 10.7536/PC230323
Review

Modified Nafion Membrane in Vanadium Redox Flow Battery

Author information +
History +

Abstract

Vanadium redox flow battery (VRB) is the most promising large-scale energy storage system due to its flexibility, high efficiency and being pollution-free, which has attracted wide attention from researchers. The separator is a key component of VRB, which plays a role in isolating vanadium ions from cross-penetration and providing proton transmembrane transfer channels. Nafion membranes produced by DuPont are the most commonly used ion exchange membranes for VRB due to their good chemical stability and high proton conductivity. However, they have problems such as poor vanadium resistance and high cost. Therefore, the key point of current research is to control the ion exchange capacity of the Nafion membrane reasonably, improve the vanadium resistance capacity of the Nafion membrane while retaining the excellent performance of the Nafion membrane through modification methods, and reduce the cost of the Nafion membrane. In this paper, the working principle of VRB and the performance characteristics of Nafion membrane are discussed. The current trend and future direction of Nafion membrane modification methods are also discussed in detail. This is of great significance for understanding the structure-activity relationship between modified Nafion membrane structure and battery performance, and guiding the future modification and design of Nafion membrane.

Contents

1 Introduction

2 Principle of VRB

3 Performance evaluation of VRB

4 Functional modification method of Nafion membrane

4.1 In situ sol-gel method

4.2 Functional material blending

4.3 Spin-coating method

4.4 Deposition method

4.5 Polymer grafting

4.6 Construction of sandwich structure

5 Conclusion and prospect

Key words

vanadium redox flow battery (VRB) / Nafion / ion exchange / proton conduction

Cite this article

Download Citations
Yang Haoling , Xu Kunyu , Zhang Qi , et al . Modified Nafion Membrane in Vanadium Redox Flow Battery[J]. Progress in Chemistry. 2023, 35(11): 1595-1612 https://doi.org/10.7536/PC230323

References

[1]
He Q, Chen Z B, Niu X Y, Han X R, Kang T, Chen J Y, Ma Y W, Zhao J. Nano Res., 2023, 16(7): 9195.
[2]
Páez T, Zhang F F,Muñoz M Á, Lubian L, Xi S B, Sanz R, Wang Q, Palma J, Ventosa E. Adv. Energy Mater., 2022, 12(1): 2102866.
[3]
Ra N, Ghosh A, Bhattacharjee A. Energy Convers. Manag., 2023, 281: 116851.
[4]
Zeng Y K, Zhao T S, An L, Zhou X L, Wei L. J. Power Sources, 2015, 300: 438.
[5]
Gong K, Xu F, Grunewald J B, Ma X Y, Zhao Y, Gu S, Yan Y S. ACS Energy Lett., 2016, 1(1): 89.
[6]
Pan M G, Shao M H, Jin Z. SmartMat, 2023, 4(4): e1198.
[7]
Wang C X, Yu B, Liu Y Z, Wang H Z, Zhang Z W, Xie C X, Li X F, Zhang H M, Jin Z. Energy Storage Mater., 2021, 36: 417.
[8]
Pan M G, Gao L Z, Liang J C, Zhang P B, Lu S Y, Lu Y, Ma J, Jin Z. Adv. Energy Mater., 2022, 12(13): 2103478.
[9]
Pan M G, Lu Y, Lu S Y, Yu B, Wei J, Liu Y Z, Jin Z. ACS Appl. Mater. Interfaces, 2021, 13(37): 44174.
[10]
Nan M J, Qiao L, Liu Y Q, Zhang H M, Ma X K. J. Power Sources, 2022, 522: 230995.
[11]
Yan W, Wang C X, Tian J Q, Zhu G Y, Ma L B, Wang Y R, Chen R P, Hu Y, Wang L, Chen T, Ma J, Jin Z. Nat. Commun., 2019, 10: 2513.
[12]
Liu Y Z, Wen G H, Liang J C, Bao S S, Wei J, Wang H Z, Zhang P B, Zhu M F, Jia Q Q, Ma J, Zheng L M, Jin Z. ACS Energy Lett., 2023, 8(1): 387.
[13]
Skyllas-Kazacos M, Rychcik M, Robins R G, Fane A G, Green M A. J. Electrochem. Soc., 1986, 133(5): 1057.
[14]
Chen W S, Chen Y A, Lee C H, Chen Y J. Materials, 2022, 15(11): 3749.
[15]
Huang Z B, Mu A L, Wu L X, Yang B, Qian Y, Wang J H. ACS Sustain. Chem. Eng., 2022, 10(24): 7786.
[16]
Schwenzer B, Zhang J L, Kim S, Li L Y, Liu J, Yang Z G. ChemSusChem, 2011, 4(10): 1388.
[17]
Hwang G J, Kim S W,In D M, Lee D Y, Ryu C H. J. Ind. Eng. Chem., 2018, 60: 360.
[18]
Shi Y, Eze C K, Xiong B Y, He W D, Zhang H, Lim T M, Ukil A, Zhao J Y. Appl. Energy, 2019, 238: 202.
[19]
Düerkop D, Widdecke H, Kunz U, Schilde C, Schmiemann A. Chem. Ingenieur Tech., 2021, 93(9): 1445.
[20]
Mara Ikhsan M, Abbas S, Do X H, Choi S Y, Azizi K, Hjuler H A, Jang J H, Ha H Y, Henkensmeier D. Chem. Eng. J., 2022, 435: 134902.
[21]
Minke C, Turek T. J. Power Sources, 2015, 286: 247.
[22]
Ye R J, Henkensmeier D, Yoon S J, Huang Z F. J. Electrochem. Energy Convers. Storage, 2018, 15(1): 010801.
[23]
Wei Z B, Zhao J Y, Xiong B Y. Appl. Energy, 2014, 135: 1.
[24]
Chieng S C, Kazacos M, Skyllas-Kazacos M. J. Power Sources, 1992, 39(1): 11.
[25]
He S S, Frank C W. J. Mater. Chem. A, 2014, 2(39): 16489.
[26]
Li Z H, Dai W J, Yu L H, Liu L, Xi J Y, Qiu X P, Chen L Q. ACS Appl. Mater. Interfaces, 2014, 6(21): 18885.
[27]
Skyllas-Kazacos M, Menictas C, Kazacos M. J. Electrochem. Soc., 1996, 143(4): L86.
[28]
Vafiadis H, Skyllas-Kazacos M. J. Membr. Sci., 2006, 279(1/2): 394.
[29]
Chen S W, Hara R, Chen K C, Zhang X, Endo N, Higa M, Okamoto K I, Wang L J. J. Mater. Chem. A, 2013, 1(28): 8178.
[30]
Teng X G, Dai J C, Bi F Y, Jiang X M, Song Y Q, Yin G P. Solid State Ion., 2015, 280: 30.
[31]
Mohammadi T, Skyllas-Kazacos M. J. Power Sources, 1995, 56(1): 91.
[32]
Lei Y, Zhang B W, Zhang Z H, Bai B F, Zhao T S. Appl. Energy, 2018, 215: 591.
[33]
Park Y, Kim D. J. Membr. Sci., 2018, 566: 1.
[34]
Jiang B, Wu L T, Yu L H, Qiu X P, Xi J Y. J. Membr. Sci., 2016, 510: 18.
[35]
Qin C C, Wang D, Liu Y M, Yang P K, Xie T, Huang L, Zou H Y, Li G W, Wu Y P. Nat. Commun., 2021, 12: 7184.
[36]
Slade S, Campbell S A, Ralph T R, Walsh F C. J. Electrochem. Soc., 2002, 149(12): A1556.
[37]
Reed D, Thomsen E, Wang W, Nie Z M, Li B, Wei X L, Koeppel B, Sprenkle V. J. Power Sources, 2015, 285: 425.
[38]
Teng X G, Dai J C, Su J, Zhu Y M, Liu H P, Song Z G. J. Power Sources, 2013, 240: 131.
[39]
Jeong S, Kim L H, Kwon Y, Kim S. Korean J. Chem. Eng., 2014, 31(11): 2081.
[40]
Oh K, Moazzam M, Gwak G, Ju H. Electrochim. Acta, 2019, 297: 101.
[41]
Kim D K, Yoon S J, Kim S. Int. J. Heat Mass Transf., 2020, 148: 119040.
[42]
Balwani A, Faraone A, Davis E M. Macromolecules, 2019, 52(5): 2120.
[43]
Teng X G, Zhao Y T, Xi J Y, Wu Z H, Qiu X P, Chen L Q. Acta Chim. Sinica, 2009, 67(6): 471.
[44]
Xi J Y, Wu Z H, Qiu X P, Chen L Q. J. Power Sources, 2007, 166(2): 531.
[45]
Teng X G, Zhao Y T, Xi J Y, Wu Z H, Qiu X P, Chen L Q. J. Power Sources, 2009, 189(2): 1240.
[46]
Drillkens J, Schulte D, Sauer D U.Batteries and Energy Technology (General) - 217th ECS Meeting, 2010, 167.
[47]
Huang S L, Yu H F, Lin Y S. J. Chem., 2017, 2017.
[48]
Teng X G, Lei J, Gu X C, Dai J C, Zhu Y M, Li F Q. Ionics, 2012, 18(5): 513.
[49]
Kondratenko M S, Karpushkin E A, Gvozdik N A, Gallyamov M O, Stevenson K J, Sergeyev V G. J. Power Sources, 2017, 340: 32.
[50]
Lin C H, Yang M C, Wei H J. J. Power Sources, 2015, 282: 562.
[51]
Domhoff A, Martin T B, Silva M S, Saberi M, Creager S, Davis E M. Macromolecules, 2021, 54(1): 440.
[52]
Trogadas P, Pinot E, Fuller T F. Electrochem. Solid-State Lett., 2012, 15(1): A5.
[53]
Domhoff A, Wang X T, Silva M S, Creager S, Martin T B, Davis E M. Soft Matter, 2022, 18(17): 3342.
[54]
Jansto A, Davis E M. ACS Appl. Mater. Interfaces, 2018, 10(42): 36385.
[55]
Yang S H, Yang D S, Yoon S J, So S, Hong S K, Yu D M, Hong Y T. Energy Fuels, 2020, 34(6): 7631.
[56]
Yang X B, Zhao L, Goh K, Sui X L, Meng L H, Wang Z B. J. Energy Chem., 2020, 41: 177.
[57]
Sun C Y, Zlotorowicz A, Nawn G, Negro E, Bertasi F, Pagot G, Vezzù K, Pace G, Guarnieri M, Di Noto V. Solid State Ion., 2018, 319: 110.
[58]
Sun C Y, Negro E, Nale A, Pagot G, Vezzù K, Zawodzinski T A, Meda L, Gambaro C, Di Noto V. Electrochim. Acta, 2021, 378: 138133.
[59]
Teng X G, Zhao Y T, Xi J Y, Wu Z H, Qiu X P, Chen L Q. J. Membr. Sci., 2009, 341(1/2): 149.
[60]
Wang N F, Peng S, Lu D, Liu S Q, Liu Y N, Huang K L. J. Solid State Electrochem., 2012, 16(4): 1577.
[61]
Ye J Y, Zhao X L, Ma Y L, Su J, Xiang C J, Zhao K Q, Ding M, Jia C K, Sun L D. Adv. Energy Mater., 2020, 10(22): 1904041.
[62]
Aziz M A, Shanmugam S. J. Power Sources, 2017, 337: 36.
[63]
Aziz M A, Han D B, Shanmugam S. ACS Sustain. Chem. Eng., 2021, 9(33): 11041.
[64]
Hossain S I, Aziz M A, Shanmugam S. ACS Sustain. Chem. Eng., 2020, 8(4): 1998.
[65]
Park S C, Lee T H, Moon G H, Kim B S, Roh J M, Cho Y H, Kim H W, Jang J, Park H B, Kang Y S. ACS Appl. Energy Mater., 2019, 2(7): 4590.
[66]
Bukola S, Li Z D, Zack J, Antunes C, Korzeniewski C, Teeter G, Blackburn J, Pivovar B. J. Energy Chem., 2021, 59: 419.
[67]
Wu C X, Lu S F, Zhang J, Xiang Y. Phys. Chem. Chem. Phys., 2018, 20(11): 7694.
[68]
Lee K J, Chu Y H. Vacuum, 2014, 107: 269.
[69]
Yu L H, Lin F, Xu L, Xi J Y. RSC Adv., 2016, 6(5): 3756.
[70]
Kim B G, Han T H, Cho C G. J. Nanosci. Nanotechnol., 2014, 14(12): 9073.
[71]
Cui Y, Hu Y, Wang Y C, Wang Y, Peng J, Li J Q, Zhai M L. Radiat. Phys. Chem., 2022, 195: 110081.
[72]
Yang X B, Zhao L, Goh K, Sui X L, Meng L H, Wang Z B. ChemistrySelect, 2019, 4(15): 4633.
[73]
Zhang D Z, Xin L, Xia Y S, Dai L H, Qu K, Huang K, Fan Y Q, Xu Z. J. Membr. Sci., 2021, 624: 119047.
[74]
Choi H J, Youn C, Kim S C, Jeong D, Lim S N, Chang D R, Bae J W, Park J. Micropor. Mesopor. Mater., 2022, 341: 112054.
[75]
Schwenzer B, Kim S, Vijayakumar M, Yang Z G, Liu J. J. Membr. Sci., 2011, 372(1/2): 11.
[76]
Jung M, Lee W, Nambi Krishnan N, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D. Appl. Surf. Sci., 2018, 450: 301.
[77]
Ahn S M, Jeong H Y, Jang J K, Lee J Y, So S, Kim Y J, Hong Y T, Kim T H. RSC Adv., 2018, 8(45): 25304.
[78]
Zhao Y Y, Zhang D H, Zhao L N, Wang S L, Liu J G, Yan C W. Electrochim. Acta, 2021, 394: 139144.
[79]
Kim H G, Kim R, Kim S, Choi C, Kim B, Guim H, Kim H T. J. Ind. Eng. Chem., 2018, 60: 401.
[80]
Yang X B, Zhao L, Sui X L, Meng L H, Wang Z B. J. Colloid Interface Sci., 2019, 542: 177.
[81]
Palanisamy G, Sadhasivam T, Park W S, Bae S T, Roh S H, Jung H Y. ACS Sustain. Chem. Eng., 2020, 8(4): 2040.
[82]
Ye J Y, Yuan D, Ding M, Long Y, Long T, Sun L D, Jia C K. J. Power Sources, 2021, 482: 229023.
[83]
Mai Z S, Zhang H M, Li X F, Xiao S H, Zhang H Z. J. Power Sources, 2011, 196(13): 5737.
[84]
Yang X Q, Zhu H J, Jiang F J, Zhou X J. J. Power Sources, 2020, 473: 228586.
[85]
Lin H L, Leon Yu T, Huang L N, Chen L C, Shen K S, Jung G B. J. Power Sources, 2005, 150: 11.
[86]
Zhang F X, Zhang H M, Ren J X, Qu C. J. Mater. Chem., 2010, 20(37): 8139.
[87]
Wei W P, Zhang H M, Li X F, Mai Z S, Zhang H Z. J. Power Sources, 2012, 208: 421.
[88]
Li J C, Liu J, Xu W J, Long J, Huang W H, He Z, Liu S Q, Zhang Y P. Membranes, 2021, 11(12): 946.
[89]
Su L, Zhang D S, Peng S S, Wu X M, Luo Y L, He G H. Int. J. Hydrog. Energy, 2017, 42(34): 21806.
[90]
Zhang D S, Wang Q, Peng S S, Yan X M, Wu X M, He G H. J. Membr. Sci., 2019, 587.
[91]
Cecchetti M, Allen Ebaugh T, Yu H R, Bonville L, Gambaro C, Meda L, Maric R, Casalegno A, Zago M. J. Electrochem. Soc., 2020, 167(13): 130535.
[92]
Su J, Ye J Y, Qin Z Y, Sun L D. Coatings, 2022, 12(3): 378.
[93]
Zeng J, Jiang C P, Wang Y H, Chen J W, Zhu S F, Zhao B J, Wang R L. Electrochem. Commun., 2008, 10(3): 372.
[94]
Decher G, Hong J D, Schmitt J. Thin Solid Films, 1992, 210/211: 831.
[95]
Yoo H Y, Heo A, Cho C G. J. Nanosci. Nanotechnol., 2016, 16(10): 10515.
[96]
Xi J Y, Wu Z H, Teng X G, Zhao Y T, Chen L Q, Qiu X P. J. Mater. Chem., 2008, 18(11): 1232.
[97]
Lu S F, Wu C X, Liang D W, Tan Q L, Xiang Y. RSC Adv., 2014, 4(47): 24831.
[98]
grosse Austing J, Nunes Kirchner C, Komsiyska L, Wittstock G. J. Membr. Sci., 2016, 510: 259.
[99]
Zhang L S, Ling L, Xiao M, Han D M, Wang S J, Meng Y Z. J. Power Sources, 2017, 352: 111.
[100]
Sha’rani S S, Abouzari-Lotf E, Nasef M M, Ahmad A, Ting T M, Ali R R. J. Power Sources, 2019, 413: 182.
[101]
Nibel O, Schmidt T J, Gubler L. J. Electrochem. Soc., 2016, 163(13): A2563.
[102]
Yang M C, Lin C H, Kuo J T, Wei H J. J. Electroanal. Chem., 2017, 807: 88.
[103]
Peng K J, Wang K H, Hsu K Y, Liu Y L. ACS Macro Lett., 2015, 4(2): 197.
[104]
Peng K J, Lai J Y, Liu Y L. RSC Adv., 2017, 7(59): 37255.
[105]
Dai J C, Dong Y C, Yu C, Liu Y X, Teng X G. J. Membr. Sci., 2018, 554: 324.
[106]
Dai J C, Ding T L, Dong Y C, Teng X G. Ionics, 2021, 27(5): 2127.
[107]
An H L, Zhang R, Li W H, Li P, Qian H D, Yang H. ACS Appl. Mater. Interfaces, 2022, 14(6): 7845.
[108]
Luo Q, Zhang H, Chen J, You D, Sun C, Zhang Y. J. Membr. Sci., 2008, 325(2): 553.
[109]
Jia C K, Liu J G, Yan C W. J. Power Sources, 2012, 203: 190.
[110]
Yu L H, Lin F, Xu L, Xi J Y. RSC Adv., 2017, 7(50): 31164.
[111]
Kim S, Yuk S, Kim H G, Choi C, Kim R, Lee J Y, Hong Y T, Kim H T. J. Mater. Chem. A, 2017, 5(33): 17279.
[112]
Liu J M, Yu L W, Cai X K, Khan U, Cai Z Y, Xi J Y, Liu B L, Kang F Y. ACS Nano, 2019, 13(2): 2094.

Funding

National Natural Science Foundation of China(51774302)
National Natural Science Foundation of China(52074320)
PDF(14003 KB)

Accesses

Citation

Detail

Sections
Recommended

/