PDF(14003 KB)
Modified Nafion Membrane in Vanadium Redox Flow Battery
Yang Haoling, Xu Kunyu, Zhang Qi, Tao Liang, Yang Zihao, Dong Zhaoxia
Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1595-1612.
PDF(14003 KB)
PDF(14003 KB)
Modified Nafion Membrane in Vanadium Redox Flow Battery
Vanadium redox flow battery (VRB) is the most promising large-scale energy storage system due to its flexibility, high efficiency and being pollution-free, which has attracted wide attention from researchers. The separator is a key component of VRB, which plays a role in isolating vanadium ions from cross-penetration and providing proton transmembrane transfer channels. Nafion membranes produced by DuPont are the most commonly used ion exchange membranes for VRB due to their good chemical stability and high proton conductivity. However, they have problems such as poor vanadium resistance and high cost. Therefore, the key point of current research is to control the ion exchange capacity of the Nafion membrane reasonably, improve the vanadium resistance capacity of the Nafion membrane while retaining the excellent performance of the Nafion membrane through modification methods, and reduce the cost of the Nafion membrane. In this paper, the working principle of VRB and the performance characteristics of Nafion membrane are discussed. The current trend and future direction of Nafion membrane modification methods are also discussed in detail. This is of great significance for understanding the structure-activity relationship between modified Nafion membrane structure and battery performance, and guiding the future modification and design of Nafion membrane.
1 Introduction
2 Principle of VRB
3 Performance evaluation of VRB
4 Functional modification method of Nafion membrane
4.1 In situ sol-gel method
4.2 Functional material blending
4.3 Spin-coating method
4.4 Deposition method
4.5 Polymer grafting
4.6 Construction of sandwich structure
5 Conclusion and prospect
vanadium redox flow battery (VRB) / Nafion / ion exchange / proton conduction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
/
| 〈 |
|
〉 |