Aqueous Zinc-ion Batteries

Xie Zhiying, Zheng Xinhua, Wang Mingming, Yu Haizhou, Qiu Xiaoyan, Chen Wei

Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1701-1726.

PDF(8878 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8878 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1701-1726. DOI: 10.7536/PC230329
Review

Aqueous Zinc-ion Batteries

Author information +
History +

Abstract

Aqueous zinc-ion batteries (AZIBs) have great advantages in terms of safety, low cost, high theoretical capacity and element abundance, which shows great potential in large-scale energy storage applications. The development of high-performance AZIBs has become a widely interesting topic recently. Although much progress has been made in AZIBs, the low energy density, poor ionic dynamics and short cycling life limit the commercialization of AZIBs. This review summarizes the challenges, recent progress and corresponding strategies for the development of cathodes, anodes, electrolytes, and energy storage mechanisms of AZIBs. It provides useful guidance for researchers in the battery area to design and develop high performance AZIBs.

Contents

1 Introduction

2 Dissolution of the cathode materials

2.1 Manganese-based materials

2.2 Vanadium-based materials

3 Electrostatic interaction

4 Oxygen/hydrogen evolution reaction

4.1 Oxygen evolution reaction

4.2 Hydrogen evolution reaction

5 Zinc dendrite and corrosion

5.1 Corrosion,passivation and zinc dendrite

5.2 Anode modification

6 Conclusion and outlook

6.1 Design of advanced cathode materials

6.2 Optimization of electrolyte

6.3 Surface modification of zinc anode and developing new anode materials

6.4 Design of high-performance separator

Key words

aqueous zinc-ion batteries / electrode material / electrolyte / capacity / cycling life / large-scale energy storage

Cite this article

Download Citations
Xie Zhiying , Zheng Xinhua , Wang Mingming , et al . Aqueous Zinc-ion Batteries[J]. Progress in Chemistry. 2023, 35(11): 1701-1726 https://doi.org/10.7536/PC230329

References

[1]
Mufutau Opeyemi B. Energy, 2021, 228: 120519.
[2]
Killer M, Farrokhseresht M, Paterakis N G. Appl. Energy, 2020, 260: 114166.
[3]
Fan X J, Sun W W, Meng F C, Xing A M, Liu J H. Green Energy Environ., 2018, 3(1): 2.
[4]
Tang B Y, Shan L T, Liang S Q, Zhou J. Energy Environ. Sci., 2019, 12(11): 3288.
[5]
Gao Y, Jiang J C, Zhang C P, Zhang W G, Jiang Y. J. Power Sources, 2018, 400: 641.
[6]
Yan H H, Zhang X K, Yang Z W, Xia M T, Xu C W, Liu Y W, Yu H X, Zhang L Y, Shu J. Coord. Chem. Rev., 2022, 452: 214297.
[7]
Shoji T, Hishinuma M, Yamamoto T. J. Appl. Electrochem., 1988, 18(4): 521.
[8]
Zhang L, Wang W F, Zhang H M, Han S M, Wang L M. Acta Chim. Sinica, 2021, 79(2): 159.
( 张璐, 王文凤, 张洪明, 韩树民, 王利民. 化学学报, 2021, 79(2): 159.)
[9]
Khayum M A, Ghosh M, Vijayakumar V, Halder A, Nurhuda M, Kumar S, Addicoat M, Kurungot S, Banerjee R. Chem. Sci., 2019, 10(38): 8889.
[10]
Geng Y F, Pan L, Peng Z Y, Sun Z F, Lin H C, Mao C W, Wang L, Dai L, Liu H D, Pan K M, Wu X W, Zhang Q B, He Z X. Energy Storage Mater., 2022, 51: 733.
[11]
Zhou T, Zhu L M, Xie L L, Han Q, Yang X L, Chen L, Wang G K, Cao X Y. J. Colloid Interface Sci., 2022, 605: 828.
[12]
Tang X, Zhou D, Zhang B, Wang S J, Li P, Liu H, Guo X, Jaumaux P, Gao X C, Fu Y Z, Wang C Y, Wang C S, Wang G X. Nat. Commun., 2021, 12: 2857.
[13]
Liu Y, Zhi J, Hoang T K A, Zhou M, Han M, Wu Y, Shi Q Y, Xing R, Chen P. ACS Appl. Energy Mater., 2022, 5(4): 4840.
[14]
Blanc L E, Kundu D P, Nazar L F. Joule, 2020, 4(4): 771.
[15]
Nam K W, Park S S, dos Reis R, Dravid V P, Kim H, Mirkin C A, Stoddart J F. Nat. Commun., 2019, 10: 4948.
[16]
Liu Y B, Zou Y N, Guo M Y, Hui Z X, Zhao L J. Chem. Eng. J., 2022, 433: 133528.
[17]
Li Y, Wang Z H, Cai Y, Pam M E, Yang Y K, Zhang D H, Wang Y, Huang S Z. Energy Environmental Mater., 2022, 5(3): 823.
[18]
Du M, Miao Z Y, Li H Z, Sang Y H, Liu H, Wang S H. J. Mater. Chem. A, 2021, 9(35): 19245.
[19]
Guo D L, Wei X G, Chang Z R, Tang H W, Li B, Shangguan E B, Chang K, Yuan X Z, Wang H J. J. Alloys Compd., 2015, 632: 222.
[20]
Zhou S H, Wu X W, Xiang Y H, Zhu L, Liu Z X, Zhao C X. Prog. Chem., 2021, 33(4): 652.
( 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 化学进展, 2021, 33(4): 652.)
[21]
Li H Y, Yao H, Sun X Y, Sheng C C, Zhao W, Wu J H, Chu S Y, Liu Z G, Guo S H, Zhou H S. Chem. Eng. J., 2022, 446: 137205.
[22]
Yuan Y F, Sharpe R, He K, Li C H, Saray M T, Liu T C, Yao W T, Cheng M, Jin H L, Wang S, Amine K, Shahbazian-Yassar R, Islam M S, Lu J. Nat. Sustain., 2022, 5(10): 890.
[23]
Yuan L B, Hao J N, Kao C C, Wu C, Liu H K, Dou S X, Qiao S Z. Energy Environ. Sci., 2021, 14(11): 5669.
[24]
Pan H L, Shao Y Y, Yan P F, Cheng Y W, Han K S, Nie Z M, Wang C M, Yang J H, Li X L, Bhattacharya P, Mueller K T, Liu J. Nat. Energy, 2016, 1(5): 16039.
[25]
Soundharrajan V, Sambandam B, Kim S, Islam S, Jo J, Kim S, Mathew V, Sun Y K, Kim J. Energy Storage Mater., 2020, 28: 407.
[26]
Chen M J, Li X Q, Yan Y J, Yang Y T, Xu Q J, Liu H M, Xia Y Y. ACS Appl. Mater. Interfaces, 2022, 14(1): 1092.
[27]
Ding S X, Zhang M Z, Qin R Z, Fang J J, Ren H Y, Yi H C, Liu L L, Zhao W G, Li Y, Yao L, Li S N, Zhao Q H, Pan F. Nano-micro Lett., 2021, 13(1): 173.
[28]
Huang A X, Zhou W J, Wang A R, Chen M F, Chen J Z, Tian Q H, Xu J L. Appl. Surf. Sci., 2021, 545: 149041.
[29]
Zhang Y Y, Lin X R, Tang X W, Hu K L, Lin X, Xie G Q, Liu X J, Qiu H J. ACS Appl. Nano Mater., 2022, 5(9): 12729.
[30]
Wang B, Zeng Y, Chen P, Hu J, Gao P, Xu J T, Guo K K, Liu J L. ACS Appl. Mater. Interfaces, 2022, 14(31): 36079.
[31]
Agnihotri N, Sen P T, De A, Mukherjee M. Mater. Res. Bull., 2017, 88: 218.
[32]
Xiao C L, Usiskin R, Maier J. Adv. Funct. Mater., 2021, 31(25): 2100938.
[33]
Guo S, Liang S Q, Zhang B S, Fang G Z, Ma D, Zhou J. ACS Nano, 2019, 13(11): 13456.
[34]
Dong H B, Liu R R, Hu X Y, Zhao F J, Kang L Q, Liu L X, Li J W, Tan Y S, Zhou Y Q, Brett D J L, He G J, Parkin I P. Adv. Sci., 2023, 10(5): 2205084.
[35]
Dai H H, Zhou R C, Zhang Z, Zhou J Y, Sun G Z. Energy Mater., 2022, 2(6): 200040.
[36]
Fang G Z, Zhu C Y, Chen M H, Zhou J, Tang B Y, Cao X X, Zheng X S, Pan A Q, Liang S Q. Adv. Funct. Mater., 2019, 29(15): 1808375.
[37]
Pu X H, Li X F, Wang L Z, Maleki Kheimeh Sari H, Li J P, Xi Y K, Shan H, Wang J J, Li W B, Liu X J, Wang S, Zhang J H, Wu Y B. ACS Appl. Mater. Interfaces, 2022, 14(18): 21159.
[38]
Qiu W D, Xiao H B, Feng H J, Lin Z C, Gao H, He W T, Lu X H. Chem. Eng. J., 2021, 422: 129890.
[39]
Wang L, Zheng J. Mater. Today Adv., 2020, 7: 100078.
[40]
Yan M Y, He P, Chen Y, Wang S Y, Wei Q L, Zhao K N, Xu X, An Q Y, Shuang Y, Shao Y Y, Mueller K T, Mai L Q, Liu J, Yang J H. Adv. Mater., 2018, 30(1): 1703725.
[41]
Yao Z, Wu Q, Chen K, Liu J, Li C. Energy Environ. Sci., 2020, 13: 3154.
[42]
Zhang D D, Cao J, Zhang X Y, Insin N, Wang S M, Han J T, Zhao Y S, Qin J Q, Huang Y H. Adv. Funct. Mater., 2021, 31(14): 2009412.
[43]
Zhang N, Dong Y, Jia M, Bian X, Wang Y Y, Qiu M D, Xu J Z, Liu Y C, Jiao L F, Cheng F Y. ACS Energy Lett., 2018, 3(6): 1366.
[44]
Heng Y L, Gu Z Y, Guo J Z, Wu X L. Acta Phys. Chim. Sin., 2021, 37(3): 11.
( 衡永丽, 谷振一, 郭晋芝, 吴兴隆. 物理化学学报, 2021, 37(3): 11 )
[45]
Ding Y, Zhang L L, Wang X, Han L N, Zhang W K, Guo C L. Chin. Chem. Lett., 2023, 34(2): 107399.
[46]
Kundu D P, Adams B D, Duffort V, Vajargah S H, Nazar L F. Nat. Energy, 2016, 1(10): 16119.
[47]
Dong Y F, Li S, Zhao K N, Han C H, Chen W, Wang B L, Wang L, Xu B A, Wei Q L, Zhang L, Xu X, Mai L Q. Energy Environ. Sci., 2015, 8(4): 1267.
[48]
Wan F, Zhang L L, Dai X, Wang X Y, Niu Z Q, Chen J. Nat. Commun., 2018, 9: 1656.
[49]
Liu S C, He J F, Liu D S, Ye M H, Zhang Y F, Qin Y L, Li C C. Energy Storage Mater., 2022, 49: 93.
[50]
Wang X, Xi B J, Ma X J, Feng Z Y, Jia Y X, Feng J K, Qian Y T, Xiong S L. Nano Lett., 2020, 20(4): 2899.
[51]
Yu H M, David Whittle J, Losic D, Ma J. Appl. Phys. Rev., 2022, 9(1): 011416.
[52]
Xing Z Y, Xu G F, Xie X S, Chen M J, Lu B G, Zhou J, Liang S Q. Nano Energy, 2021, 90: 106621.
[53]
Guo J, Ming J, Lei Y J, Zhang W L, Xia C, Cui Y, Alshareef H N. ACS Energy Lett., 2019, 4(12): 2776.
[54]
Zhang L S, Zhang B, Hu J S, Liu J, Miao L, Jiang J J. Small Methods, 2021, 5(6): 2100094.
[55]
Xu D M, Wang H W, Li F Y, Guan Z C, Wang R, He B B, Gong Y S, Hu X L. Adv. Mater. Interfaces, 2019, 6(2): 1801506.
[56]
Fang G Z, Zhou J, Pan A Q, Liang S Q. ACS Energy Lett., 2018, 3(10): 2480.
[57]
Wang X, Zhang Z, Huang M, Feng J K, Xiong S L, Xi B J. Nano Lett., 2022, 22(1): 119.
[58]
Li S Y, Yu D X, Liu L N, Yao S Y, Wang X Q, Jin X, Zhang D, Du F. Chem. Eng. J., 2022, 430: 132673.
[59]
Guo S, Qin L P, Zhang T S, Zhou M, Zhou J, Fang G Z, Liang S Q. Energy Storage Mater., 2021, 34: 545.
[60]
Liu W, Guo P, Zhang T Y, Ying X W, Zhou F L, Zhang X Y. J. Phys. Chem. C, 2022, 126(3): 1264.
[61]
Kikuchi T, Aramaki K. Corros. Sci., 2000, 42(5): 817.
[62]
Gao P, Pan Z K, Ru Q, Zhang J, Zheng M H, Zhao X, Ling F C C, Wei L. Energ. Fuel., 2022, 36(6): 3324.
[63]
Wang N, Sun C L, Liao X B, Yuan Y F, Cheng H W, Sun Q C, Wang B L, Pan X L, Zhao K N, Xu Q, Lu X G, Lu J. Adv. Energy Mater., 2020, 10(41): 2002293.
[64]
Zhang Q, Ma Y L, Lu Y, Li L, Wan F, Zhang K, Chen J. Nat. Commun., 2020, 11: 4463.
[65]
Yu X W, Manthiram A. Energy Environ. Sci., 2018, 11(3): 527.
[66]
Liu C F, Neale Z, Zheng J Q, Jia X X, Huang J J, Yan M Y, Tian M, Wang M S, Yang J H, Cao G Z. Energy Environ. Sci., 2019, 12(7): 2273.
[67]
Tang B Y, Zhou J, Fang G Z, Liu F, Zhu C Y, Wang C, Pan A Q, Liang S Q. J. Mater. Chem. A, 2019, 7(3): 940.
[68]
Guo X, Fang G Z, Zhang W Y, Zhou J, Shan L T, Wang L B, Wang C, Lin T Q, Tang Y, Liang S Q. Adv. Energy Mater., 2018, 8(27): 1801819.
[69]
Hu Z Q, Zhang F L, Zhao Y, Wang H R, Huang Y X, Wu F, Chen R J, Li L. Adv. Mater., 2022, 34(37): 2203104.
[70]
Fan W J, Sun Z W, Yuan Y, Yuan X H, You C L, Huang Q H, Ye J L, Fu L J, Kondratiev V, Wu Y P. J. Mater. Chem. A, 2022, 10(14): 7645.
[71]
Qi Y E, Xia Y Y. Acta Phys. Chimica Sin., 2023, 39(2): 8.
( 齐亚娥, 夏永姚. 物理化学学报, 2023, 39(2): 8.)
[72]
Bayaguud A, Fu Y P, Zhu C B. J. Energy Chem., 2022, 64: 246.
[73]
Du D F, Zhao S, Zhu Z, Li F J, Chen J. Angew. Chem., 2020, 132(41): 18297.
[74]
Zhou M, Chen Y, Fang G Z, Liang S Q. Energy Storage Mater., 2022, 45: 618.
[75]
Stoševski I, Bonakdarpour A, Cuadra F, Wilkinson D P. Chem. Commun., 2019, 55(14): 2082.
[76]
Soundharrajan V, Sambandam B, Kim S, Mathew V, Jo J, Kim S, Lee J, Islam S, Kim K, Sun Y K, Kim J. ACS Energy Lett., 2018, 3(8): 1998.
[77]
Yan C Y, Wang Y Y, Deng X Y, Xu Y H. Nano Micro Lett., 2022, 14(1): 98.
[78]
Oberholzer P, Tervoort E, Bouzid A, Pasquarello A, Kundu D P. ACS Appl. Mater. Interfaces, 2019, 11(1): 674.
[79]
Liu S Q, Wang B Y, Zhang X, Zhao S, Zhang Z H, Yu H J. Matter, 2021, 4(5): 1511.
[80]
Anantharaj S. Curr. Opin. Electrochem., 2022, 33: 100961.
[81]
Wang P J, Liang S Q, Chen C, Xie X S, Chen J W, Liu Z H, Tang Y, Lu B G, Zhou J. Adv. Mater., 2022, 34(33): 2202733.
[82]
Chen W, Wang Y H, Liu M, Gao L, Mao L Q, Fan Z Y, Shangguan W F. Appl. Surf. Sci., 2018, 444: 485.
[83]
Dong H Y, Tang P P, Zhang S Q, Xiao X L, Jin C, Gao Y C, Yin Y H, Li B, Yang S T. RSC Adv., 2018, 8(7): 3357.
[84]
Yang J, Shao Q, Huang B L, Sun M Z, Huang X Q. iScience, 2019, 11: 492.
[85]
Wu Z C, Li J J, Zou Z X, Wang X. J. Solid State Electrochem., 2018, 22(6): 1785.
[86]
Zhang M, Wang W J, Liang X H, Li C, Deng W J, Chen H B, Li R. Chin. Chem. Lett., 2021, 32(7): 2218.
[87]
Wang Y R, Yu Q L, Cai M R, Shi L, Zhou F, Liu W M. Tribol. Lett., 2017, 65(2): 55.
[88]
Horwitz G, Steinberg P Y, Corti H R. J. Chem. Thermodyn., 2021, 158: 106457.
[89]
Liang G J, Mo F N, Ji X L, Zhi C Y. Nat. Rev. Mater., 2021, 6(2): 109.
[90]
Liu S L, Lin Z S, Wan R D, Liu Y G, Liu Z, Zhang S D, Zhang X F, Tang Z H, Lu X X, Tian Y. J. Mater. Chem. A, 2021, 9(37): 21259.
[91]
Liu B H, Dou L T, He F, Yang J, Li Z P. RSC Adv., 2016, 6(23): 19028.
[92]
Wu X W, Long F N, Xiang Y H, Jiang J B, Wu J H, Xiong L Z, Zhang Q B. Prog. Chem., 2021, 33(11): 1990.
( 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 化学进展, 2021, 33(11): 1990.)
[93]
Huang X, Domcke W. J. Phys. Chem. A, 2021, 125(45): 9917.
[94]
Nian Q S, Zhang X R, Feng Y Z, Liu S, Sun T J, Zheng S B, Ren X D, Tao Z L, Zhang D H, Chen J. ACS Energy Lett., 2021, 6(6): 2174.
[95]
Qin R Z, Wang Y T, Zhang M Z, Wang Y, Ding S X, Song A Y, Yi H C, Yang L Y, Song Y L, Cui Y H, Liu J, Wang Z Q, Li S N, Zhao Q H, Pan F. Nano Energy, 2021, 80: 105478.
[96]
Oh K I, Baiz C R. J. Phys. Chem. B, 2018, 122(22): 5984.
[97]
Wang D H, Li Q, Zhao Y W, Hong H, Li H F, Huang Z D, Liang G J, Yang Q, Zhi C Y. Adv. Energy Mater., 2022, 12(9): 2102707.
[98]
Ma L T, Li Q, Ying Y R, Ma F X, Chen S M, Li Y Y, Huang H T, Zhi C Y. Adv. Mater., 2021, 33(12): 2007406.
[99]
Ma N Y, Wu P J, Wu Y X, Jiang D H, Lei G T. Funct. Mater. Lett., 2019, 12(5): 1930003.
[100]
Kim Y, Park Y, Kim M, Lee J M, Kim K J, Choi J W. Nat. Commun., 2022, 13: 2371.
[101]
Liu S, Lin H X, Song Q Q, Zhu J, Zhu C B. Energy Environ. Mater., 2022, DOI:10.1002/eem2.12405.
[102]
Höffler F, Müller I, Steiger M. J. Chem. Thermody., 2018, 116: 281.
[103]
Gao Y N, Li Y, Yang H Y, Zheng L M, Bai Y, Wu C. J. Energy Chem., 2022, 67: 613.
[104]
Yen Y J, Chung S H. ACS Appl. Mater. Interfaces, 2021, 13(49): 58715.
[105]
Qian G N, Zan G B, Li J Z, Lee S J, Wang Y, Zhu Y Y, Gul S, Vine D J, Lewis S, Yun W B, Ma Z F, Pianetta P, Lee J S, Li L S, Liu Y J. Adv. Energy Mater., 2022, 12(21): 2270084.
[106]
Yufit V, Tariq F, Eastwood D S, Biton M, Wu B, Lee P D, Brandon N P. Joule, 2019, 3(2): 485.
[107]
Qin R Z, Wang Y T, Yao L, Yang L Y, Zhao Q H, Ding S X, Liu L L, Pan F. Nano Energy, 2022, 98: 107333.
[108]
Li B, Zhang X T, Wang T T, He Z X, Lu B G, Liang S Q, Zhou J. Nano Micro Lett., 2021, 14(1): 6.
[109]
Zhou M, Fu C Y, Qin L P, Ran Q, Guo S, Fang G Z, Lang X Y, Jiang Q, Liang S Q. Energy Storage Mater., 2022, 52: 161.
[110]
Zheng J X, Zhao Q, Tang T, Yin J F, Quilty C D, Renderos G D, Liu X, Deng Y, Wang L, Bock D C, Jaye C, Zhang D H, Takeuchi E S, Takeuchi K J, Marschilok A C, Archer L A. Science, 2019, 366(6465): 645.
[111]
Zheng J X, Huang Z H, Zeng Y, Liu W Q, Wei B B, Qi Z B, Wang Z C, Xia C, Liang H F. Nano Lett., 2022, 22(3): 1017.
[112]
Fang Y, Xie X S, Zhang B Y, Chai Y Z, Lu B G, Liu M K, Zhou J, Liang S Q. Adv. Funct. Mater., 2022, 32(14): 2109671.
[113]
Kang L T, Cui M W, Jiang F Y, Gao Y F, Luo H J, Liu J J, Liang W, Zhi C Y. Adv. Energy Mater., 2018, 8(25): 1801090.
[114]
Zhou J H, Xie M, Wu F, Mei Y, Hao Y T, Huang R L, Wei G L, Liu A N, Li L, Chen R J. Adv. Mater., 2021, 33(33): 2101649.
[115]
Zhu X D, Li X Y, Essandoh M L K, Tan J, Cao Z Y, Zhang X, Dong P, Ajayan P M, Ye M X, Shen J F. Energy Storage Mater., 2022, 50: 243.
[116]
Pu X C, Jiang B Z, Wang X L, Liu W B, Dong L B, Kang F Y, Xu C J. Nano Micro Lett., 2020, 12(1): 152.
[117]
Guo C, Zhou J, Chen Y T, Zhuang H F, Li Q, Li J, Tian X, Zhang Y L, Yao X M, Chen Y F, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2022, 61(41): e202210871.
[118]
Wang S J, Yang Z, Chen B T, Zhou H, Wan S F, Hu L Z, Qiu M, Qie L, Yu Y. Energy Storage Mater., 2022, 47: 491.
[119]
Guo N, Huo W J, Dong X Y, Sun Z F, Lu Y T, Wu X W, Dai L, Wang L, Lin H C, Liu H D, Liang H F, He Z X, Zhang Q B. Small Methods, 2022, 6(9): 2200597.
[120]
Wang L P, Li N W, Wang T S, Yin Y X, Guo Y G, Wang C R. Electrochim. Acta, 2017, 244: 172.
[121]
Zeng Y X, Zhang X Y, Qin R F, Liu X Q, Fang P P, Zheng D Z, Tong Y X, Lu X H. Adv. Mater., 2019, 31(36): 1903675.
[122]
Zampardi G, La Mantia F. Nat. Commun., 2022, 13: 687.
[123]
Jin Y, Han K S, Shao Y Y, Sushko M L, Xiao J, Pan H L, Liu J. Adv. Funct. Mater., 2020, 30(43): 2003932.
[124]
Li Z G, Deng W J, Li C, Wang W J, Zhou Z Q, Li Y B, Yuan X R, Hu J, Zhang M, Zhu J L, Tang W, Wang X, Li R. J. Mater. Chem. A, 2020, 8(34): 17725.
[125]
Ghavami R K, Rafiei Z. J. Power Sources, 2006, 162(2): 893.
[126]
Sun K E K, Hoang T K A, Doan T N L, Yu Y, Zhu X, Tian Y, Chen P. ACS Appl. Mater. Interfaces, 2017, 9(11): 9681.
[127]
Bayaguud A, Luo X, Fu Y P, Zhu C B. ACS Energy Lett., 2020, 5(9): 3012.
[128]
Wu Z Z, Li M, Tian Y H, Chen H, Zhang S J, Sun C, Li C P, Kiefel M, Lai C, Lin Z, Zhang S Q. Nano Micro Lett., 2022, 14(1): 110.
[129]
Zhang B Y, Qin L P, Fang Y, Chai Y Z, Xie X S, Lu B G, Liang S Q, Zhou J. Sci. Bull., 2022, 67(9): 955.
[130]
Lin P X, Cong J L, Li J Y, Zhang M H, Lai P B, Zeng J, Yang Y, Zhao J B. Energy Storage Mater., 2022, 49: 172.
[131]
Han D L, Cui C J, Zhang K Y, Wang Z X, Gao J C, Guo Y, Zhang Z C, Wu S C, Yin L C, Weng Z, Kang F Y, Yang Q H. Nat. Sustain., 2021, 5(3): 205.
[132]
Meng R W, Li H, Lu Z Y, Zhang C, Wang Z X, Liu Y X, Wang W C, Ling G W, Kang F Y, Yang Q H. Adv. Mater., 2022, 34(37): 8.
[133]
Li C P, Xie X S, Liu H, Wang P J, Deng C B, Lu B G, Zhou J, Liang S Q. Natl. Sci. Rev., 2022, 9(3): 3.
[134]
Chuai M Y, Yang J L, Tan R, Liu Z C, Yuan Y, Xu Y, Sun J F, Wang M M, Zheng X H, Chen N, Chen W. Adv. Mater., 2022, 34(33): 2203249.
[135]
Yuan Y, Yang J L, Liu Z C, Tan R, Chuai M Y, Sun J F, Xu Y, Zheng X H, Wang M M, Ahmad T, Chen N, Zhu Z X, Li K, Chen W. Adv. Energy Mater., 2022, 12(16): 2103705.
[136]
Yuan X H, Wu X W, Zeng X X, Wang F X, Wang J, Zhu Y S, Fu L J, Wu Y P, Duan X F. Adv. Energy Mater., 2020, 10(40): 2001583.
[137]
Yuan X H, Ma F X, Zuo L Q, Wang J, Yu N F, Chen Y H, Zhu Y S, Huang Q H, Holze R, Wu Y P, Ree T. Electrochem. Energy Rev., 2021, 4(1): 1.
[138]
Li M M, Yu J, Xue Y L, Wang K, Wang Q M, Xie Z Y, Wang L, Yang Y, Wu J P, Qiu X Y, Yu H Z. ACS Appl. Mater. Interfaces, 2023, 15(2): 2922.
[139]
Zhu Z X, Jiang T L, Ali M, Meng Y H, Jin Y, Cui Y, Chen W. Chem. Rev., 2022, 122(22): 16610.
[140]
Zheng X H, Liu Z C, Sun J F, Luo R H, Xu K, Si M Y, Kang J, Yuan Y, Liu S, Ahmad T, Jiang T L, Chen N, Wang M M, Xu Y, Chuai M Y, Zhu Z X, Peng Q, Meng Y H, Zhang K, Wang W P, Chen W. Nat. Commun., 2023, 14: 76.
[141]
Wang M M, Ma J L, Meng Y H, Sun J F, Yuan Y, Chuai M Y, Chen N, Xu Y, Zheng X H, Li Z Y, Chen W. Angew. Chem. Int. Ed., 2023, 62(3): e202214966.
[142]
Xiao D J, Lv X M, Fan J H, Li Q, Chen Z W. Energy Materials, 2023, 3(1): 300007.

Funding

National Natural Science Foundation of China(22005141)
PDF(8878 KB)

Accesses

Citation

Detail

Sections
Recommended

/