Carbon-Based Electrocatalyst Derived from Porous Organic Polymer in Oxygen Reduction Reaction for Fuel Cells

Sun Hanxue, Wang Juanjuan, Zhu Zhaoqi, Li An

Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1638-1654.

PDF(5359 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5359 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1638-1654. DOI: 10.7536/PC230332
Review

Carbon-Based Electrocatalyst Derived from Porous Organic Polymer in Oxygen Reduction Reaction for Fuel Cells

Author information +
History +

Abstract

Fuel cell, a kind of energy conversion device that can directly convert chemical energy into electric energy, is a new and an important energy technology during China’s 14th Five-Year Plan. In recent years, the fuel cell technology has undergone iterative upgrading, which effectively promotes the transition of hydrogen energy industry from mode-exploration to multiple demonstration, and helps the high-quality development of the new energy. Cathodic oxygen reduction reaction (ORR) is one of the basic and core reactions of fuel cells, but its slow kinetic process restricts the large-scale application of fuel cells. Although metal Pt-based catalysts have high catalytic activity and can improve the reaction rate of ORR, they are not conducive to wide commercial use because of their scarcity, high cost and poor durability. The development of non-Pt-based ORR catalysts is of great practical significance to promote the development of fuel cells. Porous Organic Polymers (POPs) are an important branch of porous materials. Due to their controllable composition and diverse structure, heteroatoms and metal species can be incorporated into the skeleton to enhance the overall catalytic activity of materials. As ideal candidate materials for electrocatalysts with high-efficiency, POPs have attracted wide attention in promoting the slow kinetics of ORR. In this paper, the research progress in the synthesis strategy, composition, morphology, structure regulation and electrocatalytic performance of POPs-derived carbon-based ORR electrocatalysts in recent years are emphatically introduced. The challenges faced by POPs-derived carbon-based ORR electrocatalysts at present are discussed, and their future development directions are summarized.

Contents

1 Introduction

2 Oxygen reduction reaction(ORR)mechanism

3 Design and performance of porous organic polymer derived carbon-based ORR electrocatalysts

3.1 Conjugated microporous polymers(CMPs)derived carbon-based ORR catalysts

3.2 Covalent organic frameworks(COFs)derived carbon-based ORR catalysts

3.3 Hyper-cross-linked polymers(HCPs)derived carbon-based ORR catalysts

3.4 Covalent triazine frameworks(CTFs)derived carbon-based ORR catalysts

3.5 Polymers of intrinsic microporosity(PIMs)derived carbon-based ORR catalysts

3.6 Porous aromatic frameworks(PAFs)derived carbon-based ORR catalysts

4 Conclusion and outlook

Key words

cathodic oxygen reduction / porous organic polymer / conjugated microporous polymers / structural tunability / fuel cell

Cite this article

Download Citations
Sun Hanxue , Wang Juanjuan , Zhu Zhaoqi , et al. Carbon-Based Electrocatalyst Derived from Porous Organic Polymer in Oxygen Reduction Reaction for Fuel Cells[J]. Progress in Chemistry. 2023, 35(11): 1638-1654 https://doi.org/10.7536/PC230332

References

[1]
Wang Q, Han N, Bokhari A, Li X, Cao Y, Asif S, Shen Z F, Si W M, Wang F G, Klemeš J J, Zhao X L. Energy, 2022, 255: 124465.
[2]
Zhao G Q, Rui K, Dou S X, Sun W P. Adv. Funct. Mater., 2018, 28(43): 1803291.
[3]
Zaman S, Huang L, Douka A I, Yang H, You B, Xia B Y. Angewandte Chemie Int. Ed., 2021, 60(33): 17832.
[4]
Wei C, Rao R R, Peng J Y, Huang B T, Stephens I E L, Risch M, Xu Z J, Shao-Horn Y. Adv. Mater., 2019, 31(31): 1806296.
[5]
Wang H J, Ren H, Liu S L, Yin S L, Jiao S Q, Xu Y, Li X N, Wang Z Q, Wang L. Chem. Eng. J., 2022, 438: 135539.
[6]
Huang L, Wei M, Qi R J, Dong C L, Dang D, Yang C C, Xia C F, Chen C, Zaman S, Li F M, You B, Xia B Y. Nat. Commun., 2022, 13: 6703.
[7]
Li S W, Liu J J, Yin Z, Ren P J, Lin L L, Gong Y, Yang C, Zheng X S, Cao R C, Yao S Y, Deng Y C, Liu X, Gu L, Zhou W, Zhu J F, Wen X D, Xu B J, Ma D. ACS Catal., 2020, 10(1): 907.
[8]
Xia W, Mahmood A, Liang Z B, Zou R Q, Guo S J. Angewandte Chemie Int. Ed., 2016, 55(8): 2650.
[9]
Lin L X, Miao N H, Wallace G G, Chen J, Allwood D A. Adv. Energy Mater., 2021, 11(32): 2100695.
[10]
Wei W, Ge H T, Huang L S, Kuang M, Al-Enizi A M, Zhang L J, Zheng G F. J. Mater. Chem. A, 2017, 5(26): 13634.
[11]
He M, Song S J, Wang P, Fang Z, Wang W W, Yuan X L, Li C Y, Li H, Song W Y, Luo D, Li Z X. Carbon, 2022, 196: 483.
[12]
Feng L Y, Wang T T, Sun H, Jiang M, Chen Y G. ACS Appl. Mater. Interfaces, 2020, 12(51): 56954.
[13]
Xue W D, Zhou Q X, Cui X, Jia S R, Zhang J W, Lin Z Q. Nano Energy, 2021, 86: 106073.
[14]
Yang D H, Tao Y, Ding X S, Han B H. Chem. Soc. Rev., 2022, 51(2): 761.
[15]
Liu X, Liu C F, Xu S H, Cheng T, Wang S, Lai W Y, Huang W. Chem. Soc. Rev., 2022, 51(8): 3181.
[16]
Wroblowa H S, Pan Y C, Razumney G. J. Electroanal. Chem. Interfacial Electrochem., 1976, 69(2): 195.
[17]
Guo D H, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 2016, 351(6271): 361.
[18]
Lv Q, Si W Y, He J J, Sun L, Zhang C F, Wang N, Yang Z, Li X D, Wang X, Deng W Q, Long Y Z, Huang C S, Li Y L. Nat. Commun., 2018, 9: 3376.
[19]
Yeager E. Electrochim. Acta, 1984, 29(11): 1527.
[20]
Liu M Y, Xiao X D, Li Q, Luo L Y, Ding M H, Zhang B, Li Y X, Zou J L, Jiang B J. J. Colloid Interface Sci., 2022, 607: 791.
[21]
Kim H W, Bukas V J, Park H, Park S, Diederichsen K M, Lim J, Cho Y H, Kim J, Kim W, Han T H, Voss J, Luntz A C, McCloskey B D. ACS Catal., 2020, 10(1): 852.
[22]
Zhang J T, Xia Z H, Dai L M. Sci. Adv., 2015, 1(7): e1500564.
[23]
Zhou R F, Zheng Y, Jaroniec M, Qiao S Z. ACS Catal., 2016, 6(7): 4720.
[24]
Li Z, Yang Y W. J. Mater. Chem. B, 2017, 5(47): 9278.
[25]
Jiang J X, Su F B, Trewin A, Wood C, Campbell N, Niu H J, Dickinson C, Ganin A, Rosseinsky M, Khimyak Y, Cooper A. Angew. Chem. Int. Ed., 2007, 46(45): 8574.
[26]
Liu W B, Wang K, Wang C M, Liu W P, Pan H H, Xiang Y J, Qi D D, Jiang J Z. J. Mater. Chem. A, 2018, 6(45): 22851.
[27]
Roy S, Bandyopadhyay A, Das M, Ray P P, Pati S K, Maji T K. J. Mater. Chem. A, 2018, 6(14): 5587.
[28]
Isci R, Balkan T, Tafazoli S, Sütay B, Eroglu M S, Ozturk T. ACS Appl. Energy Mater., 2022, 5(11): 13284.
[29]
He Y F, Gehrig D, Zhang F, Lu C B, Zhang C, Cai M, Wang Y Y, Laquai F, Zhuang X D, Feng X L. Adv. Funct. Mater., 2016, 26(45): 8255.
[30]
Bandyopadhyay S, Boukhvalov D W, Nayak A K, Ha S R, Shin H J, Kwon J, Song T, Choi H. Dyes Pigments, 2019, 170: 107557.
[31]
Dou J L, Luo H T, Zhang C L, Lu J J, Luan X J, Guo W X, Zhang T, Bian W W, Bai J K, Zhang X L, Zhou B L. New J. Chem., 2021, 45(45):21020.
[32]
Wang M Y, Cao Z L, Li L Y, Ren S J. Carbon, 2022, 200: 337.
[33]
Jiao R, Zhang W L, Sun H X, Zhu Z Q, Yang Z F, Liang W D, Li A. Mater. Today Energy, 2020, 16: 100382.
[34]
Zhang W L, Sun H X, Zhu Z Q, Jiao R, Mu P, Liang W D, Li A. Renew. Energy, 2020, 146: 2270.
[35]
Sun H X, Zhou P L, Tian Z Y, Ye X Y, Zhu Z Q, Ma C H, Liang W D, Li A. ChemPlusChem, 2022, 87(7): e202200168.
[36]
Sun H X, Zhou P L, Ye X Y, Wang J J, Tian Z Y, Zhu Z Q, Ma C H, Liang W D, Li A. J. Colloid Interface Sci., 2022, 617: 11.
[37]
Zhou B L, Liu L Z, Cai P W, Zeng G, Li X Q, Wen Z H, Chen L. J. Mater. Chem. A, 2017, 5(42): 22163.
[38]
Li Q, Shao Q, Wu Q, Duan Q, Li Y H, Wang H G. Catal. Sci. Technol., 2018, 8(14): 3572.
[39]
Li Y, Tao X S, Wei J C, Lv X L, Wang H G. Chem. Asian J., 2020, 15(13): 1970.
[40]
Yang J, Xu M, Wang J Y, Jin S B, Tan B E. Sci. Rep., 2018, 8: 4200.
[41]
Brüller S, Liang H W, Kramm U I, Krumpfer J W, Feng X L, Müllen K. J. Mater. Chem. A, 2015, 3(47): 23799.
[42]
Zhu Z Q, Yang Z F, Fan Y K, Liu C, Sun H X, Liang W D, Li A. ACS Appl. Energy Mater., 2020, 3(6):5260.
[43]
Ren S B, Chen X L, Li P X, Hu D Y, Liu H L, Chen W, Xie W B, Chen Y X, Yang X L, Han D M, Ning G H, Xia X H. J. Power Sources, 2020, 461: 228145.
[44]
Hu L L, Gu S, Yu W G, Zhang W J, Xie Q J, Pan C Y, Tang J T, Yu G P. J. Colloid Interface Sci., 2020, 562: 550.
[45]
Lin D Q, Hu C G, Chen H, Qu J, Dai L M. Chem. A Eur. J., 2018, 24(69): 18487.
[46]
Ma L, Liu Y L, Liu Y, Jiang S Y, Li P, Hao Y C, Shao P P, Yin A X, Feng X, Wang B. Angew. Chem. Int. Ed., 2019, 58(13): 4221.
[47]
Chen J, Yan W, Townsend E J, Feng J T, Pan L, Del Angel Hernandez V, Faul C F J. Angew. Chem. Int. Ed., 2019, 58(34): 11715.
[48]
Wang Z J, Yang X Y, Yang T J, Zhao Y B, Wang F, Chen Y, Zeng J H, Yan C, Huang F, Jiang J X. ACS Catal., 2018, 8(9):8590.
[49]
Bhosale M E, Illathvalappil R, Kurungot S, Krishnamoorthy K. Chem. Commun., 2016, 52(2): 316.
[50]
Abdulaeva I A, Birin K P, Bessmertnykh-Lemeune A, Tsivadze A Y, Gorbunova Y G. Coord. Chem. Rev., 2020, 407: 213108.
[51]
Park J M, Hong K I, Lee H, Jang W D. Acc. Chem. Res., 2021, 54(9): 2249.
[52]
Xia W, Zou R Q, An L, Xia D G, Guo S J. Energy Environ. Sci., 2015, 8(2): 568.
[53]
Lohse M S, Bein T. Adv. Funct. Mater., 2018, 28(33): 1705553.
[54]
Bu R, Lu Y Y, Zhang B. Chem. Res. Chin. Univ., 2022, 38(5):1151.
[55]
Yang C, Tao S S, Huang N, Zhang X B, Duan J G, Makiura R, Maenosono S. ACS Appl. Nano Mater., 2020, 3(6):5481.
[56]
Park J H, Lee C H, Ju J M, Lee J H, Seol J, Lee S U, Kim J H. Adv. Funct. Mater., 2021, 31: 2101727.
[57]
Li Z, Liu Z W, Li Z Y, Wang T X, Zhao F L, Ding X S, Feng W, Han B H. Adv. Funct. Mater., 2020, 30: 1909267.
[58]
Wan X, Liu Q T, Liu J Y, Liu S Y, Liu X F, Zheng L R, Shang J X, Yu R H, Shui J L. Nat. Commun., 2022, 13: 2963.
[59]
Zhang R M, Wang K, Wang P, He Y, Liu Z M. Energies, 2023, 16(9): 3684.
[60]
Yang S, Li X W, Tan T Y, Mao J N, Xu Q, Liu M H, Miao Q Y, Mei B B, Qiao P Z, Gu S Q, Sun F F, Ma J Y, Zeng G F, Jiang Z. Appl. Catal. B Environ., 2022, 307: 121147.
[61]
Zhao X J, Pachfule P, Li S, Langenhahn T, Ye M Y, Tian G Y, Schmidt J, Thomas A. Chem. Mater., 2019, 31(9): 3274.
[62]
Chen H, Li Q H, Yan W S, Gu Z G, Zhang J. Chem. Eng. J., 2020, 401: 126149.
[63]
Zhang S H, Xia W, Yang Q, Valentino Kaneti Y, Xu X T, Alshehri S M, Ahamad T, Hossain M S A, Na J, Tang J, Yamauchi Y. Chem. Eng. J., 2020, 396: 125154.
[64]
Liu M H, Xu Q, Miao Q Y, Yang S, Wu P, Liu G J, He J, Yu C B, Zeng G F. J. Mater. Chem. A, 2022, 10(1): 228.
[65]
Liu M M, Zhu X H, Song Y J, Huang G L, Wei J M, Song X K, Xiao Q, Zhao T, Jiang W, Li X P, Luo W. Adv. Funct. Mater., 2023, 33(11): 2213395.
[66]
Tan L X, Tan B E. Chem. Soc. Rev., 2017, 46(11): 3322.
[67]
Lu Y, Liang J N, Deng S F, He Q M, Deng S Y, Hu Y Z, Wang D L. Nano Energy, 2019, 65: 103993.
[68]
Gu Y L, Son S U, Li T, Tan B E. Adv. Funct. Mater., 2021, 31(12): 2170082.
[69]
Li B Y, Gong R N, Luo Y L, Tan B E. Soft Matter, 2011, 7(22): 10910.
[70]
Xu J J, Shi L, Wang J N, Lu S Y, Wang Y K, Gao G X, Ding S J. Carbon, 2018, 138: 348.
[71]
Zhang J W, Xu D, Wang C C, Guo J N, Yan F. Adv. Mater. Interfaces, 2018, 5(7): 1701641.
[72]
Yang Z F, Han J X, Jiao R, Sun H X, Zhu Z Q, Liang W D, Li A. J. Colloid Interface Sci., 2019, 557: 664.
[73]
Zhu Z Q, Cui J, Cao X Y, Yang L J, Sun H X, Liang W D, Li J Y, Li A. Int. J. Hydrog. Energy, 2022, 47(16): 9504.
[74]
Zhai T L, Xuan C J, Xu J C, Ban L, Cheng Z M, Wang S L, Wang D L, Tan B E, Zhang C. Chem. Asian J., 2018, 13(18): 2671.
[75]
Barman J, Deka N, Maji P K, Dutta G K. ChemElectroChem, 2022, 9(15): e202200677.
[76]
Yang Y, He Z P, Liu Y, Wang S L, Wang H G, Zhu G S. Appl. Surf. Sci., 2021, 565: 150579.
[77]
Pei Y C, Qi Z Y, Li X L, Maligal-Ganesh R V, Goh T W, Xiao C X, Wang T Y, Huang W Y. J. Mater. Chem. A, 2017, 5(13): 6186.
[78]
Zhu Z Q, Cui J, Cao X Y, Yang L J, Sun H X, Liang W D, Li J Y, Li A. Energy Technol., 2022, 10(5): 2101097.
[79]
Chen H W, Liu Y J, Liu B, Yang M, Li H M, Chen H B. Nanoscale, 2022, 14(34): 12431.
[80]
Qian Q P, Hu H Y, Huang S D, Li Y, Lin L L, Duan F, Zhu H, Du M L, Lu S L. Carbon, 2023, 202: 81.
[81]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.
[82]
Liu M Y, Guo L P, Jin S B, Tan B E. J. Mater. Chem. A, 2019, 7(10): 5153.
[83]
Kamiya K, Kamai R, Hashimoto K, Nakanishi S. Nat. Commun., 2014, 5: 5040.
[84]
Hao L, Zhang S S, Liu R J, Ning J, Zhang G J, Zhi L J. Adv. Mater., 2015, 27(20): 3190.
[85]
Chai D, Min X T, Harada T, Nakanishi S, Zhang X W. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 628: 127240.
[86]
Cao Y Q, Zhu Y Z, Chen X F, Abraha B S, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. Catal. Sci. Technol., 2019, 9(23): 6606.
[87]
Jiao L, Hu Y L, Ju H X, Wang C D, Gao M R, Yang Q, Zhu J F, Yu S H, Jiang H L. J. Mater. Chem. A, 2017, 5(44): 23170.
[88]
Zhang X L, Lin Z Y, Su W, Zhang M T, Wang X J, Li K X. Appl. Surf. Sci., 2022, 592: 153278.
[89]
Zheng Y, Chen S, Song H, Guo H L, Zhang K A I, Zhang C, Liu T X. Nanoscale, 2020, 12(27): 14441.
[90]
Yu W G, Gu S, Fu Y, Xiong S H, Pan C Y, Liu Y N, Yu G P. J. Catal., 2018, 362: 1.
[91]
Jena H S, Krishnaraj C, Parwaiz S, Lecoeuvre F, Schmidt J, Pradhan D, van der Voort P. ACS Appl. Mater. Interfaces, 2020, 12(40): 44689.
[92]
Sönmez T, Belthle K S, Iemhoff A, Uecker J, Artz J, Bisswanger T, Stampfer C, Hamzah H H, Alexandra Nicolae S, Titirici M M, Palkovits R. Catal. Sci. Technol., 2021, 11(18): 6191.
[93]
Tong L, Shao Z G, Qian Y S, Li W M. J. Mater. Chem. A, 2017, 5(8): 3832.
[94]
Zhu Y Z, Chen X F, Liu J, Zhang J F, Xu D Y, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. ChemSusChem, 2018, 11(14): 2402.
[95]
Iwase K, Yoshioka T, Nakanishi S, Hashimoto K, Kamiya K. Angew. Chem. Int. Ed., 2015, 54(38): 11068.
[96]
Zhou S K, Xiao Z C, Yang Q, Huang X X, Niu Y, Ma Y J, Zhi L J. Sci. China Mater., 2021, 64(9): 2221.
[97]
Zheng Y, Song H, Chen S, Yu X H, Zhu J X, Xu J S, Zhang K, Zhang C, Liu T X. Small, 2020, 16(47): 2004342.
[98]
Zhu Y P, Li J J, Chen Y B, Zou J, Cheng Q Q, Chen C, Hu W B, Zou L L, Zou Z Q, Yang B, Yang H. ACS Catal., 2021, 11(21): 13020.
[99]
Dun R M, He X, Huang J, Wang W liu Y W, Li L H, Lu B W, Hua Z L, Shi J L. J. Mater. Chem. A, 2023, 11(11): 5902.
[100]
Quernheim M, Liang H W, Su Q, Baumgarten M, Koshino N, Higashimura H, Müllen K. Chem. A Eur. J., 2014, 20(44): 14178.
[101]
Patil B, Satilmis B, Uyar T. J. Power Sources, 2020, 451: 227799.
[102]
He D P, Rong Y Y, Kou Z K, Mu S C, Peng T, Malpass-Evans R, Carta M, McKeown N B, Marken F. Electrochem. Commun., 2015, 59: 72.
[103]
Tian Y Y, Zhu G S. Chem. Rev., 2020, 120(16): 8934.
[104]
Wu X, Shaibani M, Smith S J D, Konstas K, Hill M R, Wang H T, Zhang K S, Xie Z L. J. Mater. Chem. A, 2018, 6(24): 11327.
[105]
Chen J H, Jiang L C, Wang W T, Wang P Y, Li X, Ren H, Wang Y G. Micropor. Mesopor. Mater., 2021, 326: 111385.
[106]
Zhao S, Bian Z, Liu Z L, Wang Y H, Cui F C, Wang H G, Zhu G S. Adv. Funct. Mater., 2022, 32 (44):2204539.
[107]
Xiang Z H, Wang D, Xue Y H, Dai L M, Chen J F, Cao D P. Sci. Rep., 2015, 5: 8307.
[108]
Wu K Q, Chen R, Zhou Z X, Chen X H, Lv Y Q, Ma J, Shen Y F, Liu S Q, Zhang Y J. Angew. Chem. Int. Ed., 2023, 62(12): e202217078.

Funding

National Natural Science Foundation of China(22006061)
National Natural Science Foundation of China(21975113)
Gansu Provincial Science Fund for Distinguished Young Scholars(23JRRA808)
Postgraduate “Innovation Star” program of Gansu Province(2023CXZX423)
PDF(5359 KB)

Accesses

Citation

Detail

Sections
Recommended

/