Rare EarthDoped Lead Halide Perovskites: Synthesis, Properties and RadiationDetectors

Weiran Chen, Lin Ma, Ting Zhao, Zhengguang Yan, Jiawen Xiao, Zhenzhong Wang, Xiaodong Han

Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1864-1880.

PDF(2369 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2369 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1864-1880. DOI: 10.7536/PC230404
Review

Rare EarthDoped Lead Halide Perovskites: Synthesis, Properties and RadiationDetectors

Author information +
History +

Abstract

In recent years, lead halide perovskites have shown excellent performance in photovoltaic devices and photodetectors due to its excellent semiconductor properties and have become a hot spot in materials science.Doping rare earth elements is a promising way to improve the performances of lead halide perovskites. In this paper, we review the latest research progress of rare earths doped lead halide perovskite materials in the preparation, structures, properties, as well as radiation detectors. The doped rare earths introduce new luminescent centers and energy levels for new luminescence properties, improving the crystallinity and semiconductor performances of perovskite crystals. Therefore, rare earth doping can further improve the performance of lead halide perovskite radiation detectors.

Contents

1 Introduction

2 Growth and structure of rare earth doped lead halides perovskites

2.1 rare earth ions and Rare earth doped lead halides perovskites

2.2 Synthesis of rare earth-doped lead halides perovskites

2.3 Effect of rare earth ions on the growth and structure of perovskite

2.4 Composition distribution and doping sites of rare earth ions in lead halide perovskite

3 Luminescence properties of rare earth doped lead halides perovskites

3.1 Introducing the luminous centers of rare earth ions

3.2 Enhanced emission of perovskite matrix

4 Semiconductor electrical properties of rare earth doped lead halides perovskites

4.1 Theoretical study on electrical doping of lead perovskite halide by rare earth ions

4.2 Experimental study on electrical doping of lead perovskite halide by rare earth ions

5 Application of rare earth Ions doped lead halides perovskite crystals in radiation detection

5.1 Brief introduction of perovskite radiation detection

5.2 Rare earth doped lead perovskite halide radiation radiation detector

6 Conclusion and prospect

Key words

lead halide perovskites / rare earth doping / photoluminescence / radiation detection

Cite this article

Download Citations
Weiran Chen , Lin Ma , Ting Zhao , et al . Rare EarthDoped Lead Halide Perovskites: Synthesis, Properties and RadiationDetectors[J]. Progress in Chemistry. 2023, 35(12): 1864-1880 https://doi.org/10.7536/PC230404

References

[1]
Tailor N K, Kar S, Mishra P, These A, Kupfer C, Hu H L, Awais M, Saidaminov M, Dar M I, Brabec C, Satapathi S. ACS Mater. Lett., 2021, 3(7): 1025.
[2]
Lin H R, Zhou C K, Tian Y, Siegrist T, Ma B W. ACS Energy Lett., 2018, 3(1): 54.
[3]
Yuan Z, Zhou C K, Tian Y, Shu Y, Messier J, Wang J C, van de Burgt L J, Kountouriotis K, Xin Y, Holt E, Schanze K, Clark R, Siegrist T, Ma B W. Nat. Commun., 2017, 8: 14051.
[4]
Li X T, Hoffman J M, Kanatzidis M G. Chem. Rev., 2021, 121(4): 2230.
[5]
DuanD W, Ge C Y, Rahaman M Z, Lin C, Shi Y M, Lin H R, Hu H L, Wu T. NPG Asia Mater., 2023, 15: 1.
[6]
Sun S Q, Lu M, Gao X P, Shi Z F, Bai X E, Yu W W, Zhang Y. Adv. Sci., 2021, 8(24): 2102689.
[7]
MitziD B. J. Chem. Soc.,Dalton Trans., 2001(1): 1.
[8]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.
[9]
Im J H, Lee C R, Lee J W, Park S W, Park N G. Nanoscale, 2011, 3(10): 4088.
[10]
Ling Y C, Yuan Z, Tian Y, Wang X, Wang J C, Xin Y, Hanson K, Ma B W, Gao H W. Adv. Mater., 2016, 28(2): 305.
[11]
Xing G C, Mathews N, Lim S S, Yantara N, Liu X F, SabbaD, Grätzel M, Mhaisalkar S, Sum T C. Nat. Mater., 2014, 13(5): 476.
[12]
Chen Q S, Wu J, Ou X Y, Huang B L, Almutlaq J, Zhumekenov A A, Guan X W, Han S Y, Liang L L, Yi Z G, Li J A, Xie X J, Wang Y, Li Y, FanD Y, TehD B L, All A H, Mohammed O F, Bakr O M, Wu T, Bettinelli M, Yang H H, Huang W, Liu X G. Nature, 2018, 561(7721): 88.
[13]
Heo J H, ShinD H, Park J K, KimD H, Lee S J, Im S H. Adv. Mater., 2018, 30(40): 1801743.
[14]
Zhang S Y. Spectroscopy of Rare Earth Ions:Spectral Properties And Spectral Theory. Beijing: Science Press, 2008.
(张思远. 稀土离子的光谱学:光谱性质和光谱理论. 北京: 科学出版社, 2008.).
[15]
Zhang Y. Rare Earth Functional Materials. Beijing: Chemical Industry Press, 2015.
(张胤. 稀土功能材料. 北京: 化学工业出版社, 2015.).
[16]
Yan Y L, Cao J M, Meng F N, Wang N, Gao L G, Ma T L. Prog. Chem., 2019, 31(07): 1031.
(闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 化学进展, 2019, 31(07): 1031.).
[17]
Duan J L, Zhao Y Y, Yang X Y, Wang YD, He B L, Tang Q W. Adv. Energy Mater., 2018, 8(31): 1802346.
[18]
Zeng Z C, Xu Y S, Zhang Z S, Gao Z S, Luo M, Yin Z Y, Zhang C, Xu J, Huang B L, Luo F, Du Y P, Yan C H. Chem. Soc. Rev., 2020, 49(4): 1109.
[19]
Crane M J, KroupaD M, Roh J Y, Anderson R T, Smith MD, GamelinD R. ACS Appl. Energy Mater., 2019, 2(6): 4560.
[20]
Jiang F. Research on optic property in the ions-doped all inorganic perovskite. Master’s Thesis,Hunan University,China, 2020.
(姜峰. 基于离子掺杂全无机钙钛矿的发光特性研究. 硕士学位论文,湖南大学, 2020.).
[21]
Leupold N, Panzer F. Adv. Funct. Mater., 2021, 31(14): 2007350.
[22]
Aleksanyan E, Aprahamian A, Mukasyan A S, Harutyunyan V, Manukyan K V. J. Mater. Sci., 2020, 55(20): 8665.
[23]
Stefanski M, Ptak M, Sieradzki A, Strek W. Chem. Eng. J., 2021, 408: 127347.
[24]
Dagnall K A, Conley A M, Yoon L U, Rajeev H S, Lee S H, Choi J J. ACS Omega, 2022, 7(24): 20968.
[25]
Jurisch M, Eichler S, Bruder M. Vertical bridgman growth of binary compound semiconductors. In: Rudolph P (ed) Handbook of Crystal Growth (Second Edition). Boston: Elsevier, 2015. 331.
[26]
JuD X, Zheng X P, Yin J, Qiu Z W, Türedi B, Liu X L, Dang Y Y, Cao B Q, Mohammed O F, Bakr O M, Tao X T. ACS Energy Lett., 2019, 4(1): 228.
[27]
Saidaminov M I, Abdelhady A L, Murali B, Alarousu E, Burlakov V M, Peng W, Dursun I, Wang L F, He Y, Maculan G, Goriely A, Wu T, Mohammed O F, Bakr O M. Nat. Commun., 2015, 6: 7586.
[28]
ShiD, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M. Science, 2015, 347(6221): 519.
[29]
Bari M, Wu H A, Bokov A A, Ali R F, Tailor H N, Gates BD, Ye Z G. CrystEngComm, 2021, 23(18): 3326.
[30]
Stoumpos C C, Malliakas CD, Peters J A, Liu Z F, Sebastian M, Im J, Chasapis T C, Wibowo A C, ChungD Y, Freeman A J, Wessels B W, Kanatzidis M G. Cryst. GrowthDes., 2013, 13(7): 2722.
[31]
Zhang P, Sun Q H, Xu YD, Li X A, Liu L, Zhang GD, Tao X T. Cryst. GrowthDes., 2020, 20(4): 2424.
[32]
Watanabe K, Koshimizu M, Yanagida T, Fujimoto Y, Asai K. Jpn. J. Appl. Phys., 2016, 55(2S): 02BC20.
[33]
Hommerich U, Uba S, Kabir A, Trivedi S B, Yang C, Brown E E. Opt. Mater. Express, 2020, 10(8): 2011.
[34]
Brown E E, Fleischman ZD, McKay J, Hommerich U, Kabir A A, Riggins J, Trivedi S, Dubinskii M. J. Opt. Soc. Am. B, 2022, 40(1): A1.
[35]
Roh J YD, Smith MD, Crane M J, BinerD, Milstein T J, Krämer K W, GamelinD R. Phys. Rev. Mate., 2020, 4(10): 105405.
[36]
Velázquez M, Ferrier A, PÉchev S, Gravereau P, Chaminade J P, Portier X, MoncorgÉ R. J. Cryst. Growth, 2008, 310(24): 5458.
[37]
Ma L, Yan Z G, Zhou X Y, Pi Y Q, Du Y P, Huang J E, Wang K W, Wu K, Zhuang C Q, Han XD. Nat. Commun., 2021, 12: 2023.
[38]
Wang S, Chen Y A, Yao J J, Zhao G X, Li L Z, Zou G F. J. Mater. Chem. C, 2021, 9(20): 6498.
[39]
Rong S S, Xiao Y Q, Jiang J X, Zeng Q G, Li Y B. J. Phys. Chem. C, 2020, 124(16): 8992.
[40]
Nandihalli N, GregoryD H, Mori T K. Adv. Sci., 2022, 9(25): 2106052.
[41]
Zi L, Xu W, Sun R, Li Z M, Zhang J W, Liu L, Wang N, Wang Y E, Ding N, Hu J H, Lu S Y, Zhu H C, Song H W. Chem. Mater., 2022, 34(16): 7412.
[42]
Chen X Y, Xu J, Xu Y S, Luo F, Du Y P. Inorg. Chem. Front., 2019, 6: 2226.
[43]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15(6): 3692.
[44]
Zhang F, Zhong H Z, Chen C, Wu X G, Hu X M, Huang H L, Han J B, Zou B S, Dong Y P. ACS Nano, 2015, 9(4): 4533.
[45]
Pan G C, Bai X E, YangD W, Chen X, Jing P T, Qu S N, Zhang L J, ZhouD L, Zhu J Y, Xu W, Dong B A, Song H W. Nano Lett., 2017, 17(12): 8005.
[46]
Liu L J, Li J T, McLeod J A. Nanoscale, 2018, 10(24): 11452.
[47]
Debnath G H, Bloom B P, Tan S S, WaldeckD H. Nanoscale, 2022, 14(16): 6037.
[48]
Sun R. Doctor’sDissertation of Jilin University,China, 2023.
(孙蕊. 吉林大学博士学位论文, 2023.).
[49]
Dong Y R, Zeng P, Yu Y, Xie Y J, Yang B L, Liang R Q, Ou Q R, Zhang S Y. Adv. Electron. Mater., 2020, 6(3): 1901162.
[50]
Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun LD, Yan C H. Science. 2019, 363(6424): 265.
[51]
Yang Y Q, Wu J H, Wang X B, Guo Q Y, Liu X P, Sun W H, Wei Y L, Huang Y F, Lan Z, Huang M L, Lin J M, Chen H W, Wei Z H. Adv. Mater., 2020, 32(7): 1904347.
[52]
Wu X F, Sun J, Shao H, Zhai Y, Li L F, Chen WD, Zhu J Y, Dong B, Xu L, ZhouD L, Xu W, Song H W, Bai X. Chem. Eng. J., 2021, 426: 131310.
[53]
Lei J, Chang L Y, Dong Z H, Liu L J. Mater. Res. Bull., 2021, 137: 111191.
[54]
Wang Q, Wang X M, Yang Z, Zhou N H, Deng Y H, Zhao J J, Xiao X, Rudd P, Moran A, Yan Y F, Huang J S. Nat. Commun., 2019, 10: 5633.
[55]
Lin Y Z, Shao Y C, Dai J, Li T, Liu Y, Dai X Z, Xiao X, Deng Y H, Gruverman A, Zeng X C, Huang J S. Nat. Commun., 2021, 12: 7.
[56]
Ma J P, Chen Y M, Zhang L M, Guo S Q, Liu JD, Li H, Ye B J, Li Z Y, Zhou Y, Zhang B B, Bakr O M, Zhang J Y, Sun H T. J. Mater. Chem. C, 2019, 7(10): 3037.
[57]
Stefanski M, Boiko V, Ptak M, Strek W. J. Alloys Compd., 2022, 905: 164216.
[58]
Song Z L, Xu W, Wu Y J, Liu S N, Bi W B, Chen X F, Song H W. Small, 2020, 16(40): 2001770.
[59]
Liu Y N, Pan G C, Wang R, Shao H, Wang H, Xu W, Cui H N, Song H W. Nanoscale, 2018, 10(29): 14067.
[60]
He L J, Meng J L, Feng J, Liu X J, Zhang H J. Inorg. Chem. Front., 2020, 7(23): 4669.
[61]
Milstein T J, KroupaD M, GamelinD R. Nano Lett., 2018, 18(6): 3792.
[62]
Li X Y, Duan S, Liu H C, Chen G Y, Luo Y, Ågren H. J. Phys. Chem. Lett., 2019, 10(3): 487.
[63]
Zhou L, Liu T R, Zheng J, Yu K, Yang F, Wang N, Zuo Y H, Liu Z, Xue C L, Li C B, Cheng B W, Wang Q M. J. Phys. Chem. C, 2018, 122(47): 26825.
[64]
Cao Q X, Ilyas A, Zhang S A, Ju Z J, Sun F L, Liu T Y, Yang Y, Lu Y H, Liu X F, Deng R R. Nanoscale, 2021, 13(26): 11552.
[65]
Wang K, Zheng L Y, Zhu T, Yao X, Yi C, Zhang X T, Cao Y, Liu L, Hu W P, Gong X. Nano Energy, 2019, 61: 352.
[66]
Xie Y J, Peng B, Bravić I, Yu Y, Dong Y R, Liang R Q, Ou Q R, Monserrat B, Zhang S Y. Adv. Sci., 2020, 7(20): 2001698.
[67]
Sun R, Lu P, ZhouD L, Xu W, Ding N, Shao H, Zhang Y, LiD Y, Wang N, Zhuang X M, Dong B A, Bai X E, Song H W. ACS Energy Lett., 2020, 5(7): 2131.
[68]
Kluherz K T, Mergelsberg S T, SommerD E, Roh J YD, Saslow S A, BinerD, Krämer K W, Dunham S T, de Yoreo J J, GamelinD R. Phys. Rev. Mate., 2022, 6(7): 074601.
[69]
Ferro S M, Wobben M, Ehrler B. Mater. Horiz., 2021, 8(4): 1072.
[70]
CortecchiaD, MrÓz W, Folpini G, Borzda T, Leoncino L, Alvarado-Leaños A L, Speller E M, Petrozza A. Chem. Mater., 2021, 33(7): 2289.
[71]
XuD, Sun C, Han J C, Zhang H, Tao J Q, Wei T, Fan C, Zhang Z H, Bi W G. J. Alloys Compd., 2022, 902: 163841.
[72]
Mondal B, Poovathan A, Sheikh T, Nag A. ChemNanoMat, 2022, 8(8): e202200104.
[73]
Xia W L, Ren Z W, Zheng Z S, Luo C Z, Li J E, Ma W C, Zhou X, Chen Y. Nanoscale, 2023, 15(3): 1109.
[74]
Shu B W, Chang Y J, Zhang J H, Cheng X P, YuD B. Nano Res., 2021, 14(10): 3352.
[75]
Yao J S, Ge J, Han B N, Wang K H, Yao H B, Yu H L, Li J H, Zhu B S, Song J Z, Chen C, Zhang Q, Zeng H B, Luo Y, Yu S H. J. Am. Chem. Soc., 2018, 140(10): 3626.
[76]
Yin J, Ahmed G H, Bakr O M, BrÉdas J L, Mohammed O F. ACS Energy Lett., 2019, 4(3): 789.
[77]
Milstein T J, Roh J YD, Jacoby L M, Crane M J, SommerD E, Dunham S T, GamelinD R. Chem. Mater., 2022, 34(8): 3759.
[78]
Ahmed G H, El-Demellawi J K, Yin J, Pan J, VelusamyD B, Hedhili M N, Alarousu E, Bakr O M, Alshareef H N, Mohammed O F. ACS Energy Lett., 2018, 3(10): 2301.
[79]
Euvrard J, Yan Y F, MitziD B. Nat. Rev. Mater., 2021, 6(6): 531.
[80]
Xu X W, Wang Y Q, Meng H X, Zhu T S, YanD, Zhu W J, Liu S J, Zhao Q A. Matter, 2022, 5(7): 2086.
[81]
Lyons J L. Chem. Mater., 2021, 33(15): 6200.
[82]
Mannodi-Kanakkithodi A, Park J S, Jeon N, CaoD H, GosztolaD J, Martinson A B F, Chan M K Y. Chem. Mater., 2019, 31(10): 3599.
[83]
Marchenko E I, Fateev S A, Eremin N N, Chen Q, Goodilin E A, Tarasov A B. ACS Mater. Lett., 2021, 3(9): 1377.
[84]
Freitas A L M, Tofanello A, Bonadio A, Souza J A. J. Mater. Sci., 2022, 33(23): 18327.
[85]
Liu J L, Wang S Y, Chen M Y, Jiang P, Cao L X, Li W H, Ran H B, Hu Y E, Han H W, Tang Y W. Sol. RRL, 2022, 6(9): 2200361.
[86]
Yang Y, HanD W, Yang Y, Yi S W, Yuan Q A, ZhouD Y, Feng L. APL Mater., 2020, 8(7): 071102.
[87]
Parveen S, Das M, Ghosh S, Giri P K. Nanoscale, 2022, 14(17): 6402.
[88]
Zhang Y Q, Cheng X Y, TuD T, Gong Z L, Li R F, Yang Y J, Zheng W, Xu J, Deng S Q, Chen X Y. Angew. Chem. Int. Ed., 2021, 60(17): 9693.
[89]
Zi L, Song J A, Wang N, Wang T Y, Li W, Zhu H C, Xu W, Song H W. Laser Photonics Rev., 2023, 17(5): 2200852.
[90]
KroupaD M, Roh J Y, Milstein T J, Creutz S E, GamelinD R. ACS Energy Lett., 2018, 3(10): 2390.
[91]
Wu X C, Guo Z, Zhu S A, Zhang B B, Guo S M, Dong X H, Mei L Q, Liu R X, Su C J, Gu Z J. Adv. Sci., 2022, 9(17): 2200831.
[92]
Wang M, Deng K M, Meng L X, Li L A. Small Meth., 2020, 4(2): 1900652.
[93]
Wu X W, Li H W, Wang K, Sun X W, Wang LD. RSC Adv., 2018, 8(20): 11095.
[94]
Shen L N, Chen R, ZhangD, Yilmazoglu U C, Gu K, Sarmiento J S, Zhu T, Zheng L Y, Zheng J E, Wang H, Liu C M, Gong X. Adv. Funct. Mater., 2022, 32(47): 2207911.
[95]
Zhao Y P, Yavuz I, Wang M H, Weber M H, Xu M J, Lee J H, Tan S, Huang T Y, MengD, Wang R, Xue J J, Lee S J, Bae S H, Zhang A N, Choi S G, Yin Y F, Liu J, Han T H, Shi Y T, Ma H R, Yang W X, Xing Q Y, Zhou Y F, Shi P J, Wang S S, Zhang E, Bian J M, Pan X Q, Park N G, Lee J W, Yang Y. Nat. Mater., 2022, 21(12): 1396.
[96]
Jin P, Tang Y J, LiD W, Wang Y, Ran P, Zhou C Y, Yuan Y, Zhu W J, Liu T Y, Liang K, Kuang C F, Liu X, Zhu B W, Yang Y. Nat. Commun., 2023, 14: 626.
[97]
Sun R J, Wang Z F, Wang H Q, Chen Z H, Yao Y G, Zhang H P, Gao Y N, Hao X T, Liu H Q, Zhang Y H. ACS Appl. Mater. Interfaces, 2022, 14(32): 36801.
[98]
He Y H, Petryk M, Liu Z F, ChicaD G, Hadar I, Leak C, Ke W J, Spanopoulos I, Lin W W, ChungD Y, Wessels B W, He Z, Kanatzidis M G. Nat. Photonics, 2021, 15(1): 36.
[99]
Devanathan R, Corrales L R, Gao F, Weber W J. Nucl. Instrum. Meth. Phys. Res. Sect. A, 2006, 565(2): 637.
[100]
Zhou F G, Li Z Z, Lan W, Wang Q A, Ding L M, Jin Z W. Small Meth., 2020, 4(10): 2000506.
[101]
Xu X, Qian W, Xiao S, Wang J, Zheng S, Yang S. EcoMat., 2020, 2(4): 12064.
[102]
Zi L, Song J A, Wang N, Wang T Y, Li W, Zhu H C, Xu W, Song H W. Laser Photonics Rev., 2023, 17(5): 2200852.
[103]
Hu G J, Chen Q, Wei W, Sun Z C, Yao M N, Shen L. Chin. J. Lumin., 2023, 44(5): 771.
(胡刚舰, 陈琦, 魏薇, 孙仔成, 姚梦楠, 沈亮. 发光学报, 2023, 44(5): 771.).
[104]
Meng G, Ye Y Q, Fan L M, Wang S M, Volodymyr G, Fang XD. J. Inorg. Mater., 2020, 35(11): 1203.
(孟钢, 叶雨琪, 范黎明, 王时茂, Gnatyuk Volodymyr, 方晓东. 无机材料学报, 2020, 35(11): 1203.).
[105]
Quinn X L, Kumar R E, Kodur M, CakanD N, Cai Z H, Zhou T, Holt M V, FenningD P. Adv. Opt. Mater., 2021, 9(18): 2002221.

Funding

National Natural Science Foundation of China(12174016)
National Key R&D Program of China(2021YFA1200201)
Beijing Outstanding Young Scientists Projects(BJJWZYJH01201910005018)
Beijing Postdoctoral Research Foundation(Q6009A03202301)
PDF(2369 KB)

Accesses

Citation

Detail

Sections
Recommended

/