Preparation, Application and Prospect of RIfS Interference Substrates

Qianqian Su, Yu Sun, Wenwen Zhang, Zhengde Peng, Weiping Qian

Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1793-1806.

PDF(1714 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1714 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1793-1806. DOI: 10.7536/PC230410
Review

Preparation, Application and Prospect of RIfS Interference Substrates

Author information +
History +

Abstract

Reflectometric interference spectroscopy (RIfS) is a label-free detection technique by measuring the optical thickness of thin films which is based on white light interference. Interference effective substrates, as the sensor unit of the RIfS system, the construction of which is the core part of RIfS technology and the key to determining the performance of the RIfS system. Currently used interference substrates are generally divided into two categories: one is the planar solid substrates represented by inorganic oxides or polymer films, and the other is the porous substrates represented by porous silicon (pSi), nanoporous anodic alumina (NAA) and silica colloidal crystals (SCC). The preparation of planar solid substrate is simple and the signal is stable, but the detection sensitivity is usually low. In comparison with planar solid substrates, a porous substrate can provide a three-dimensional structure with a large specific surface area which will result in increased ligand immobilization density and capture of analyte. Therefore, the detection sensitivity is improved and there is more room for adjustment, which is very suitable for the development of a biochemical sensing platform. From pSi to NAA to SCC, the preparation controllability and sensing performance of porous substrates are continuously improved, which is considered a promising development direction of RIfS interference substrate. Here, the research status of RIfS interference substrates has been summarized and discussed, the common preparation methods of substrates are described, their representative applications in biosensing are summarized, the advantages and disadvantages of different substrates are discussed, and the future development directions of RIfS interference substrates has also been outlined.

Contents

1 Introduction

2 Measurement principles of reflectometric interference spectroscopy

3 Interference substrate

3.1 Planar solid substrate

3.2 Porous silicon substrate

3.3 Nanoporous anodic alumina substrate

3.4 Silica colloidal crystals substrate

4 Conclusion and outlook

Key words

reflectometric interference spectroscopy / interference substrate / nanoporous anodic alumina / porous silicon / colloidal crystal

Cite this article

Download Citations
Qianqian Su , Yu Sun , Wenwen Zhang , et al . Preparation, Application and Prospect of RIfS Interference Substrates[J]. Progress in Chemistry. 2023, 35(12): 1793-1806 https://doi.org/10.7536/PC230410

References

[1]
Gauglitz G. Anal. Bioanal. Chem., 2005, 381(1): 141.
[2]
Damborský P, Švitel J, Katrlík J. Essays Biochem., 2016, 60(1): 91.
[3]
Rau S, Gauglitz G. Anal. Bioanal. Chem., 2012, 402(1): 529.
[4]
Hänel C, Gauglitz G. Anal. Bioanal. Chem., 2002, 372(1): 91.
[5]
Rasooly A, Herold KE. Methods Mol. Biol., 2009, 503: v-ix.
[6]
Langmuir I, Schaefer V J. J. Am. Chem. Soc., 1937, 59(7): 1406.
[7]
Brecht A, Gauglitz G, Polster J. Biosens. Bioelectron., 1993, 8(7/8): 387.
[8]
Kraus G, Gauglitz G. FreseniusJ. Anal. Chem., 1992, 344(4/5): 153.
[9]
Weizmann Y, Patolsky F, Willner I. Anal., 2001, 126(9): 1502.
[10]
Leopold N, Busche S, Gauglitz G, Lendl B. Spectrochim. Acta A, 2009, 72(5): 994.
[11]
Gauglitz G, Brecht A, Kraus G, Mahm W. Sens. Actuat. B, 1993, 11(1/3): 21.
[12]
Gauglitz G. Anal. Bioanal. Chem., 2010, 398(6): 2363.
[13]
Pacholski C, Sartor M, Sailor M J, Cunin F, Miskelly G M. J. Am. Chem. Soc., 2005, 127(33): 11636.
[14]
Schwartz M P, Alvarez SD, Sailor M J. Anal. Chem., 2007, 79(1): 327.
[15]
Proll G, Steinle L, Pröll F, Kumpf M, Moehrle B, Mehlmann M, Gauglitz G. J. Chromatogr. A, 2007, 1161(1/2): 2.
[16]
Busche S, Kasper M, Mutschler T, Leopold N, Gauglitz G. Interaction Behaviour of the Ultramicroporous Polymer Makrolon by Optical Spectroscopic Methods. Eds.: Grundke K, Stamm M, Adler H J. Series: Progress in Colloid and Polymer Science, 2006. 16-22.
[17]
Kasper M, Busche S, Dieterle F, Belge G, Gauglitz G. Meas. Sci. Technol., 2004, 15(3): 540.
[18]
Pröll F, Möhrle B, Kumpf M, Gauglitz G. Anal. Bioanal. Chem., 2005, 382(8): 1889.
[19]
Brecht A, Ingenhoff J, Gauglitz G. Sens. Actuat. B, 1992, 61-3: 96.
[20]
Zimmermanna R, Osaki T, Gauglitz G, Werner C. Biointerphases, 2007, 2(4): 159.
[21]
Piehler J, Brecht A, Gauglitz G, Zerlin M, Maul C, Thiericke R, Grabley S. Anal. Biochem., 1997, 249(1): 94.
[22]
Yu F, YaoD F, Qian W P. Clin Chem, 2000, 46(9): 1489.
[23]
Lehmann V, Gösele U. Appl. Phys. Lett., 1991, 58(8): 856.
[24]
Herino R, Bomchil G, Barla K, Bertrand C, Ginoux J L. J. Electrochem. Soc., 1987, 134(8): 1994.
[25]
Li W, Liu Z H, Fontana F, Ding Y P, LiuD F, Hirvonen J T, Santos H A. Adv. Mater., 2018, 30(24): 1703740.
[26]
Lee S, Kang J, KimD. Materials, 2018, 11(12): 2557.
[27]
Santos H A, Mäkilä E, Airaksinen A, Bimbo L, Hirvonen J. Nanomedicine, 2014, 9(4): 535.
[28]
Low S P, Voelcker N H. Biocompatibility of Porous Silicon. Handbook of Porous Silicon. Cham: Springer, 2014. 1-13.
[29]
Terracciano M, Rea I, Borbone N, Moretta R, Oliviero G, Piccialli G, De Stefano L. Molecules, 2019, 24(12): 2216.
[30]
Torres-Costa V, AgullÓ-Rueda F, Martín-Palma R J, Martínez-Duart J M. Opt. Mater., 2005, 27(5): 1084.
[31]
Singh S, Sharma S N, Govind, Shivaprasad S M, Lal M, Khan M A. J. Mater. Sci. Mater. Med., 2009, 1:S181.
[32]
Tembe S, Kubal B S, Karve M, D’Souza S F. Anal. Chim. Acta, 2008, 612(2): 212.
[33]
De Stefano L, Arcari P, Lamberti A, Sanges C, Rotiroti L, Rea I, Rendina I. Sensors, 2007, 7(2): 214.
[34]
Uhlir A Jr. Bell Syst. Tech. J., 1956, 35(2): 333.
[35]
Canham L T. Appl. Phys. Lett., 1990, 57(10): 1046.
[36]
Li Y J, Toan N, Wang Z Q, Bin Samat K F, Ono T. Nanoscale Res. Lett., 2021, 16(1): 1.
[37]
Sailor M J. Porous Silicon in Practice: Preparation, Characterization and Applications, Weinheim:Wiley-VCH, 2012.
[38]
Henstock J R, Ruktanonchai U R, Canham L T, Anderson S I. J. Mater. Sci., 2014, 25(4): 1087.
[39]
Rendina I, Rea I, Rotiroti L, De Stefano L. Phys. E, 2007, 381-2: 188.
[40]
Harraz F A. Actuators B Chem., 2014, 202: 897.
[41]
Moretta R, Terracciano M, Borbone N, Oliviero G, Schiattarella C, Piccialli G, Falanga A P, Marzano M, Dardano P, De Stefano L, Rea I. Nanomaterials, 2020, 10(11): 2233.
[42]
Terracciano M, Rea I, De Stefano L, Rendina I, Oliviero G, Nici F, D’Errico S, Piccialli G, Borbone N. Nanoscale Res. Lett., 2014, 9(1): 1.
[43]
Krismastuti F S H, Cavallaro A, Prieto-Simon B, Voelcker N H. Adv. Sci., 2016, 3(6): 1500383.
[44]
Ghosh R, Das R, Giri P K. Sens. Actuat. B, 2018, 260: 693.
[45]
Tieu T, Alba M, Elnathan R, Cifuentes-Rius A, Voelcker N H. Adv. Ther., 2019, 2(1): 1800095.
[46]
Buriak J M, Allen M J. J. Am. Chem. Soc., 1998, 120(6): 1339.
[47]
Arshavsky-Graham S, Massad-Ivanir N, Segal E, Weiss S. Anal. Chem., 2019, 91(1): 441.
[48]
Dhanekar S, Jain S. Biosens. Bioelectron., 2013, 41: 54.
[49]
Dancil K P S, GreinerD P, Sailor M J. J. Am. Chem. Soc., 1999, 121(34): 7925.
[50]
Tang Y Y, Li Z, Luo Q H, Liu J Q, Wu J M. Biosens. Bioelectron., 2016, 79: 715.
[51]
Shtenberg G, Massad-Ivanir N, Segal E. Anal., 2015, 140(13): 4507.
[52]
Moretta R, Terracciano M, Dardano P, Casalino M, De Stefano L, Schiattarella C, Rea I. Front. Chem., 2018, 6: 583.
[53]
Moretta R, Terracciano M, Dardano P, Casalino M, Rea I, de Stefano L. Open Mater. Sci., 2018, 4(1): 15.
[54]
Gammoudi H, Belkhiria F, Sahlaoui K, Zaghdoudi W, Daoudi M, Helali S, Morote F, Saadaoui H, Amlouk M, Jonusauskas G, Cohen-Bouhacina T, Chtourou R. J. Alloys Compd., 2018, 731: 978.
[55]
Massad-Ivanir N, Bhunia S K, Raz N, Segal E, Jelinek R. NPG Asia Mater., 2018, 10(1): e463.
[56]
Li Y Y, Jia Z H, Lv GD, Wen H, Li P, Zhang H Y, Wang J J. Biomed. Opt. Express, 2017, 8(7): 3458.
[57]
Li J L, Sailor M J. Biosens. Bioelectron., 2014, 55: 372.
[58]
Myndrul V, Viter R, Savchuk M, Koval M, Starodub N, Silamiᶄelis V, Smyntyna V, Ramanavicius A, Iatsunskyi I. Talanta, 2017, 175: 297.
[59]
Maniya N H. Rec. Adv. Mater. Sci., 2018, 53: 49-73.
[60]
Bonanno L M, DeLouise L A. Anal. Chem., 2010, 82(2): 714.
[61]
Jane A, Dronov R, Hodges A, Voelcker N H. Trends Biotechnol., 2009, 27(4): 230.
[62]
Ghicov A, Schmuki P. Chem. Commun., 2009(20): 2791.
[63]
Santos A, Kumeria T, LosicD. Trac Trends Anal. Chem., 2013, 44: 25.
[64]
Keller F, Hunter M S, RobinsonD L. J. Electrochem. Soc., 1953, 100(9): 411.
[65]
Santos A, Kumeria T, LosicD. Materials, 2014, 7(6): 4297.
[66]
Ingham C J, ter Maat J, de Vos W M. Biotechnol. Adv., 2012, 30(5): 1089.
[67]
Lee W, Ji R, Gösele U, Nielsch K. Nat. Mater., 2006, 5(9): 741.
[68]
Alkire R C, Gogotsi Y, Simon P, Eftekhari A. Nanostructured Materials in Electrochemistry, Hoboken: John Wiley & Sons, 2008.
[69]
Jessensky O, Müller F, Gösele U. Appl. Phys. Lett., 1998, 72(10): 1173.
[70]
Li A P, Müller F, Birner A, Nielsch K, Gösele U. J. Appl. Phys., 1998, 84(11): 6023.
[71]
Ono S, Saito M, Asoh H. Electrochim. Acta, 2005, 51(5): 827.
[72]
LosicD, Velleman L, Kant K, Kumeria T, Gulati K, Shapter J G, BeattieD A, Simovic S. Aust. J. Chem., 2011, 64(3): 294.
[73]
Masuda H, Fukuda K. Science, 1995, 268(5216): 1466.
[74]
An H C, An J Y, Kim B W. Korean J. Chem. Eng., 2009, 26(1): 160.
[75]
Macias G, Hernández-Eguía L P, Ferré-Borrull J, Pallares J, Marsal L F. ACS Appl. Mater. Interfaces, 2013, 5(16): 8093.
[76]
Pan S L, Rothberg L J. Nano Lett., 2003, 3(6): 811.
[77]
Alvarez SD, Li C P, Chiang C E, Schuller I K, Sailor M J. ACS Nano, 2009, 3(10): 3301.
[78]
Kumeria T, Santos A, LosicD. Sensors, 2014, 14(7): 11878.
[79]
Kumeria T, LosicD. Nanoscale Res. Lett., 2012, 7(1): 1.
[80]
Kumeria T, LosicD. Phys. Status Solidi RRL, 2011, 5(10-11): 406.
[81]
Kumeria T, Parkinson L, LosicD. Nanoscale Res. Lett., 2011, 6(1): 1.
[82]
Kumeria T, Kurkuri MD, Diener K R, Parkinson L, LosicD. Biosens. Bioelectron., 2012, 35(1): 167.
[83]
Nemati M, Santos A, Kumeria T, LosicD. Anal. Chem., 2015, 87(17): 9016.
[84]
Kumeria T, Gulati K, Santos A, LosicD. ACS Appl. Mater. Interfaces, 2013, 5(12): 5436.
[85]
Chen Y T, Santos A, Wang Y, Kumeria T, Li J S, Wang C H, LosicD. ACS Appl. Mater. Interfaces, 2015, 7(35): 19816.
[86]
Santos A, Kumeria T, LosicD. Anal. Chem., 2013, 85(16): 7904.
[87]
Chen Y T, Santos A, Wang Y, Kumeria T, Wang C H, Li J S, LosicD. Nanoscale, 2015, 7(17): 7770.
[88]
LosicD, Simovic S. Expert Opin.DrugDeliv., 2009, 6(12): 1363.
[89]
Lee J S, Kim S W, Jang E Y, Kang B H, Lee S W, Sai-Anand G, Lee S H, KwonD H, Kang S W. J. Nanomater., 2015, 2015: 1.
[90]
Yeom S H, Han M E, Kang B H, Kim K J, Yuan H, Eum N S, Kang S W. Sens. Actuat. B, 2013, 177: 376.
[91]
Rajeev G, Xifre-Perez E, Prieto Simon B, Cowin A J, Marsal L F, Voelcker N H. Sens. Actuat. B, 2018, 257: 116.
[92]
Kaur H, Shorie M. Nanoscale Adv., 2019, 1(6): 2123.
[93]
Pol L, Acosta L K, Ferré-Borrull J, Marsal L F. Sensors, 2019, 19(20): 4543.
[94]
Amouzadeh Tabrizi M, Ferré-Borrull J, Marsal L F. Sens. Actuat. B, 2020, 321: 128314.
[95]
Qian W P, Gu Z Z, Fujishima A, Sato O. Langmuir, 2002, 18(11): 4526.
[96]
Xia Y, Gates B, Yin Y, Lu Y. Adv. Mater., 2000, 12(10): 693.
[97]
Stein A, Wilson B E, Rudisill S G. Chem. Soc. Rev., 2013, 42(7): 2763.
[98]
Meng Y, Qiu J J, Wu S L, Ju B Z, Zhang S F, Tang B T. ACS Appl. Mater. Interfaces, 2018, 10(44): 38459.
[99]
Hou J E, Li M Z, Song Y L. Angew. Chem. Int. Ed., 2018, 57(10): 2544.
[100]
Su Q Q, Xu P F, Zhou L L, Wu F, Dong A, Wan Y Z, Qian W P. ACS Appl. Mater. Interfaces, 2020, 12(32): 35950.
[101]
Zheng H B, Ravaine S. Crystals, 2016, 6(5): 54.
[102]
Jiang P, Bertone J F, Hwang K S, Colvin V L. Chem. Mater., 1999, 11(8): 2132.
[103]
Zhou Z C, Zhao X S. Langmuir, 2004, 20(4): 1524.
[104]
Fortes L M, Gonçalves M C, Almeida R M. J. Non Cryst. Solids, 2009, 35518-21: 1189.
[105]
Su Q Q, Liu C, Dong A, Xu P F, Qian W P. J. Nanosci. Nanotechnol., 2018, 18(12): 8367.
[106]
Fortes L M, Gonçalves M C, Almeida R M. Opt. Mater., 2011, 33(3): 408.
[107]
Jiang P, Bertone J F, Colvin V L. Science, 2001, 291(5503): 453.
[108]
Liu P M, Bai L, Yang J J, Gu H C, Zhong Q F, Xie Z Y, Gu Z Z. Nanoscale Adv., 2019, 1(5): 1672.
[109]
Zhao Y J, Shang L R, Cheng Y, Gu Z Z. Acc. Chem. Res., 2014, 47(12): 3632.
[110]
Hou J, Li M Z, Song Y L. Nano Today, 2018, 22: 132.
[111]
Huang J, Hu X B, Zhang W X, Zhang Y H, Li G T. Colloid Polym. Sci., 2008, 286(1): 113.
[112]
Cai Z Y, KwakD H, PunihaoleD, Hong Z M, Velankar S S, Liu X Y, Asher S A. Angew. Chem. Int. Ed., 2015, 54(44): 13036.
[113]
Su Q Q, Wu F, Xu P F, Dong A, Liu C, Wan Y Z, Qian W P. Anal. Chem., 2019, 91(9): 6080.
[114]
Wang L, Zhou L L, Ma N, Su Q Q, Wan Y Z, Zhang Y F, Wu F, Qian W P. Talanta, 2022, 237: 122958.
[115]
Wang L, Wan Y Z, Ma N, Zhou L L, ZhaoD M, Yu J N, Wang H L, Lin Z P, Qian W P. Colloids Surf. B, 2022, 219: 112839.
[116]
Wu F, Wan Y Z, Wang L, Zhou L L, Ma N, Qian W P. Langmuir, 2021, 37(23): 7264.
[117]
Yan C Y, Wang L, Ma N, Wan Y Z, Zhou L L, Zhu X Y, Qian W P. Anal. Chim. Acta, 2022, 1236: 340582.
[118]
Ma N, Wan Y Z, Zhou L L, Wang L, Qian W P. Int. J. Biol. Macromol., 2022, 203: 563.
[119]
Ma N, Wang L, Zhou L L, Wan Y Z, Ding S H, Qian W P. Food Hydrocoll., 2023, 137: 108386.
[120]
Zhou L L, Su Q Q, Wu F, Wan Y Z, Xu P F, Dong A, Li Q A, Qian W P. Anal. Chem., 2020, 92(17): 12071.
[121]
Zhou L L, Wang L, Ma N, Wu F, Wan Y Z, Zhang Y F, Qian W P. Food Chem., 2022, 366: 130553.
[122]
Zhou L L, Wang L, Ma N, Wan Y Z, Qian W P. Food Hydrocoll., 2022, 125: 107445.
[123]
Zhou L L, Wang L, Ma N, Wan Y Z, Zhang Y, Liu H, Qian W P. Anal. Chem., 2022, 94(45): 15809.

Funding

Open Research Fund of State Key Laboratory ofDigital Medical Engineering(2023-K13)
Shuangchuang Ph.D award of Jiangsu province(JSSCBS20211301)
Doctoral research project of Jiangsu Ocean University(KQ21002)
PDF(1714 KB)

Accesses

Citation

Detail

Sections
Recommended

/