Preparation and Application of Direct Electrospun Fibrous Sponges

Song Yilong, Zhao Shuang, Li Kunfeng, Fei Zhifang, Chen Guobing, Yang Zichun

Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1686-1700.

PDF(7293 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7293 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1686-1700. DOI: 10.7536/PC230411
Review

Preparation and Application of Direct Electrospun Fibrous Sponges

Author information +
History +

Abstract

Electrospun fibrous sponge is a fluffy three-dimensional (3D) material based on one-dimensional fibers. The increase of dimension makes this material have many more prominent advantages than traditional electrospun films, so it has shown great application potential in various fields. With the in-depth study of the three-dimensional structure of electrospinning, it has become a current challenge to obtain stable fibrous sponges directly by electrospinning and improve their performance. In this paper, various new strategies for preparing fibrous sponges by direct electrospinning in recent years are reviewed in detail. Firstly, the mechanism, characteristics and representative research results of different methods are analyzed and summarized. Then the application status of this material in the fields of tissue engineering, environmental governance, safety protection and intelligent equipment is introduced. Finally, the future development trend of electrospinning fibrous sponge is prospected.

Contents

1 Introduction

2 Preparation process of direct electrospinning fibrous sponges

2.1 Sol-controlled self-assembly

2.2 Humidity induced phase separation

2.3 Air-assisted electrospinning

2.4 Near-field electrospinning/3D printing

2.5 Template-assisted collection

3 Application of direct electrospinning fibrous sponges

3.1 Tissue engineering

3.2 Sound absorption and noise reduction

3.3 Fire protection and heat insulation

3.4 Filtration and separation

3.5 Sensors

4 Conclusion and outlook

Key words

direct electrospinning / three-dimensional structure / fiber curing / tissue engineering / environmental protection

Cite this article

Download Citations
Song Yilong , Zhao Shuang , Li Kunfeng , et al . Preparation and Application of Direct Electrospun Fibrous Sponges[J]. Progress in Chemistry. 2023, 35(11): 1686-1700 https://doi.org/10.7536/PC230411

References

[1]
Rahmati M, Mills D K, Urbanska A M, Saeb M R, Venugopal J R, Ramakrishna S, Mozafari M. Prog. Mater. Sci., 2021, 117: 100721.
[2]
Hu J, Zhang S F, Tang B T. Energy Storage Mater., 2021, 37: 530.
[3]
Li X Y, Zhou R F, Wang Z Z, Zhang M H, He T S. J. Mater. Chem. A, 2022, 10(4): 1642.
[4]
Gbewonyo S, Carpenter A W, Gause C B, Mucha N R, Zhang L F. Mater. Des., 2017, 134: 218.
[5]
Ponce-Alcántara S, Martín-Sánchez D, PÉrez-Márquez A, Maudes J, Murillo N, García-RupÉrez J. Opt. Mater. Express, 2018, 8(10): 3163.
[6]
Cho H J, Kim Y H, Park S, Kim I D. ChemNanoMat, 2020, 6(7): 1014.
[7]
Haghighat F, Hosseini Ravandi S A, Nasr Esfahany M, Valipouri A. J. Mater. Sci., 2018, 53(6): 4665.
[8]
Danish Ali Zaidi S, Wang C, Jin Y Z, Zhu S D, Yuan H F, Yang Y Y, Chen J. J. Alloys Compd., 2020, 848: 156531.
[9]
Xia S H, Zhang Y Y, Zhao Y, Wang X, Yan J H. ACS Appl. Mater. Interfaces, 2021, 13(37): 44768.
[10]
Cheng Y, An Q, Li D W, Fu Y Y, Zhang W, Zhang Y. J. Text. Res., 2021, 42(03):71.
( 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. 纺织学报, 2021, 42(03):71.)
[11]
Liu H Z, Li D W, Shen Y, Deng B Y. Fibers Polym., 2021, 22(3): 664.
[12]
Zong D D, Bai W Y, Geng M, Yin X, Yu J Y, Zhang S C, Ding B. ACS Nano, 2022, 16(9): 13740.
[13]
Zheng Z B, Wu H Y, Si Y, Jia Y T, Ding B. Compos. Commun., 2021, 27: 100788.
[14]
Li Y, Wang J, Qian D J, Chen L, Mo X M, Wang L, Wang Y, Cui W G. J. Nanobiotechnology, 2021, 19(1): 131.
[15]
Li S Y, Qiu F, Xia Y G, Chen D R, Jiao X L. ACS Appl. Mater. Interfaces, 2022, 14(17): 19409.
[16]
Rao F, Yuan Z P, Li M, Yu F, Fang X X, Jiang B G, Wen Y Q, Zhang P X. Artif. Cells Nanomed. Biotechnol., 2019, 47(1): 491.
[17]
Mi H Y, Jing X, Napiwocki B N, Li Z T, Turng L S, Huang H X. Chem. Eng. J., 2018, 331: 652.
[18]
Yan G D, Yu J, Qiu Y J, Yi X H, Lu J, Zhou X S, Bai X D. Langmuir, 2011, 27(8): 4285.
[19]
Li M M, Long Y Z. Mater. Sci. Forum, 2011, 688: 95.
[20]
Deitzel J M, Kleinmeyer J, Harris D, Beck Tan N C. Polymer, 2001, 42(1): 261.
[21]
Sun B, Long Y Z, Yu F, Li M M, Zhang H D, Li W J, Xu T X. Nanoscale, 2012, 4(6): 2134.
[22]
Bonino C A, Efimenko K, Jeong S I, Krebs M D, Alsberg E, Khan S A. Small, 2012, 8(12): 1928.
[23]
Cai S B, Xu H L, Jiang Q R, Yang Y Q. Langmuir, 2013, 29(7): 2311.
[24]
Chen X, Xu Y, Zhang W X, Xu K L, Ke Q F, Jin X Y, Huang C. Nanoscale, 2019, 11(17): 8185.
[25]
Sun B, Long Y Z, Zhang H D, Li M M, Duvail J L, Jiang X Y, Yin H L. Prog. Polym. Sci., 2014, 39(5): 862.
[26]
Han Z Y, Cheng Z Q, Chen Y, Li B, Liang Z W, Li H F, Ma Y J, Feng X. Nanoscale, 2019, 11(13): 5942.
[27]
Mi H Y, Li H, Jing X, Zhang Q, Feng P Y, He P, Liu Y J. Sep. Purif. Technol., 2020, 241: 116700.
[28]
Vong M, Diaz Sanchez F J, Keirouz A, Nuansing W, Radacsi N. Mater. Des., 2021, 208: 109916.
[29]
Cheng X T, Liu Y T, Si Y, Yu J Y, Ding B. Nat. Commun., 2022, 13: 2637.
[30]
Szewczyk P K, Stachewicz U. Adv. Colloid Interface Sci., 2020, 286: 102315.
[31]
Mailley D, HÉbraud A, Schlatter G. Macromol. Mater. Eng., 2021, 306(7): 2100115.
[32]
Zhang R H, Gong X B, Wang S, Tian Y C, Liu Y T, Zhang S C, Yu J Y, Ding B. ACS Appl. Mater. Interfaces, 2021, 13(48): 58027.
[33]
Kim J I, Lee J C, Kim M J, Park C H, Kim C S. Mater. Lett., 2019, 236: 510.
[34]
Chen X, Xu Y, Liang M M, Ke Q F, Fang Y Y, Xu H, Jin X Y, Huang C. J. Hazard. Mater., 2018, 347: 325.
[35]
Zhao L, Wu H Y, Jiao W L, Yin X, Si Y, Yu J Y, Ding B. Compos. Commun., 2021, 25: 100681.
[36]
Cao L T, Si Y, Yin X, Yu J Y, Ding B. ACS Appl. Mater. Interfaces, 2019, 11(38): 35333.
[37]
Wu H Y, Zhao L, Zhang S C, Si Y, Yu J Y, Ding B. ACS Appl. Mater. Interfaces, 2021, 13(15): 18165.
[38]
Yu W J, Xin B J, Lu Z. Compos. Commun., 2022, 32: 101164.
[39]
Liang T, Parhizkar M, Edirisinghe M, Mahalingam S. Eur. Polym. J., 2014, 61: 72.
[40]
Wu H Y, Zhao L, Si Y, Zhang S C, Yu J Y, Ding B. Compos. Commun., 2021, 25: 100766.
[41]
Feng Y Y, Zong D D, Hou Y J, Yin X, Zhang S C, Duan L Y, Si Y, Jia Y T, Ding B. J. Colloid Interface Sci., 2021, 593: 59.
[42]
Liu H, Zhang S C, Liu L F, Yu J Y, Ding B. Adv. Funct. Mater., 2019, 29(39): 1904108.
[43]
Weinbreck F, Tromp R H, de Kruif C G. Biomacromolecules, 2004, 5(4): 1437.
[44]
Chang G Q, Zhu X F, Li A K, Kan W W, Warren R, Zhao R G, Wang X L, Xue G, Shen J Y, Lin L W. Mater. Des., 2016, 97: 126.
[45]
Wang H L, Zhang X, Wang N, Li Y, Feng X, Huang Y, Zhao C S, Liu Z L, Fang M H, Ou G, Gao H J, Li X Y, Wu H. Sci. Adv., 2017, 3(6): e1603170.
[46]
Wang H L, Lin S, Yang S, Yang X D, Song J N, Wang D, Wang H Y, Liu Z L, Li B, Fang M H, Wang N, Wu H. Small, 2018, 14(19): 1800258.
[47]
Wang H L, Huang Y, Liao S Y, He H C, Wu H. IOP Conf. Ser.: Earth Environ. Sci., 2019, 358(5): 052015.
[48]
Zhou Y M, Wang H B, He J X, Qi K, Ding B, Cui S Z. Fibers Polym., 2018, 19(10): 2169.
[49]
Guo J R, Fu S B, Deng Y P, Xu X, Laima S J, Liu D Z, Zhang P Y, Zhou J, Zhao H, Yu H X, Dang S X, Zhang J N, Zhao Y D, Li H, Duan X F. Nature, 2022, 606(7916): 909.
[50]
He X X, Zheng J, Yu G F, You M H, Yu M, Ning X, Long Y Z. J. Phys. Chem. C, 2017, 121(16): 8663.
[51]
Sun D H, Chang C, Li S, Lin L W. Nano Lett., 2006, 6(4): 839.
[52]
Luo G X, Teh K S, Liu Y M, Zang X N, Wen Z Y, Lin L W. ACS Appl. Mater. Interfaces, 2015, 7(50): 27765.
[53]
Park Y S, Kim J, Oh J M, Park S, Cho S, Ko H, Cho Y K. Nano Lett., 2020, 20(1): 441.
[54]
Vong M, Speirs E, Klomkliang C, Akinwumi I, Nuansing W, Radacsi N. RSC Adv., 2018, 8(28): 15501.
[55]
Yousefzadeh M, Latifi M, Amani-Tehran M, Teo W E, Ramakrishna S. J. Eng. Fibers Fabr., 2012, 7(2): 17.
[56]
Schneider O D, Weber F, Brunner T J, Loher S, Ehrbar M, Schmidlin P R, Stark W J. Acta Biomater., 2009, 5(5): 1775.
[57]
Zhou Y G, Hu Z Y, Du D P, Tan G Z. Int. J. Adv. Manuf. Technol., 2019, 100(9/12): 3045.
[58]
Zhou Y, Tan G Z. ASME 2018 13th International Manufacturing Science and Engineering Conference. 2018.
[59]
Tan G Z, Zhou Y G. Nano Micro Lett., 2018, 10(4): 73.
[60]
Zhou Y G, Mahesh T, Edward L. Q, Tan G Z. JOM, 2019, 71: 956.
[61]
Zhu P, Lin A M, Tang X C, Lu X Z, Zheng J Y, Zheng G F, Lei T P. AIP Adv., 2016, 6(5): 55304.
[62]
Zaman M A U, Sooriyaarachchi D, Zhou Y G, Tan G Z, Du D P. Adv. Manuf., 2021, 9(3): 414.
[63]
Kim J I, Kim J Y, Park C H. Sci. Rep., 2018, 8: 3424.
[64]
Lin S J, Xue Y P, Chang G Q, Han Q L, Chen L F, Jia Y B, Zheng Y G. Mater. Res. Express, 2018, 5(2): 025401.
[65]
Shah Hosseini N, Bölgen N, Khenoussi N, Yılmazş N, Yetkin D, Hekmati A H, Schacher L, Adolphe D. Int. J. Polym. Mater. Polym. Biomater., 2018, 67(3): 143.
[66]
Hong S, Kim G. Appl. Phys. A, 2011, 103(4): 1009.
[67]
Yang X L, Chen X, Zhao J Y, Lv W L, Wu Q L, Ren H J, Chen C T, Sun D P. J. Nanomater., 2021, 2021: 4639317.
[68]
Ki C S, Kim J W, Hyun J H, Lee K H, Hattori M, Rah D K, Park Y H. J. Appl. Polym. Sci., 2007, 106(6): 3922.
[69]
Kasuga T, Obata A, Maeda H, Ota Y, Yao X F, Oribe K. J. Mater. Sci. Mater. Med., 2012, 23(10): 2349.
[70]
Mi H Y, Jing X, Huang H X, Turng L S. Mater. Lett., 2017, 204: 45.
[71]
Baji A, Mai Y W, Wong S C, Abtahi M, Chen P. Compos. Sci. Technol., 2010, 70(5): 703.
[72]
Song J Y, Kim D Y, Yun H J, Kim J H, Yi C C, Park S M. Compos. Sci. Technol., 2022, 227: 109629.
[73]
Zhong H L, Huang J, Wu J, Du J H. Nano Res., 2022, 15(2): 787.
[74]
Ng R, Zang R, Yang K K, Liu N, Yang S T. RSC Adv., 2012, 2(27): 10110.
[75]
Choi W, Lee S, Kim S H, Jang J H. Macromol. Biosci., 2016, 16(6): 824.
[76]
Li L, Zhou G L, Wang Y, Yang G, Ding S, Zhou S B. Biomaterials, 2015, 37: 218.
[77]
Taskin M B, Xu R D, Gregersen H, Nygaard J V, Besenbacher F, Chen M L. ACS Appl. Mater. Interfaces, 2016, 8(25): 15864.
[78]
Qian Y, Song J, Zheng W, Zhao X, Ouyang Y, Yuan W, Fan C. Adv. Funct. Mater., 2018, 28(14): 1707077.
[79]
Walser J, Stok K S, Caversaccio M D, Ferguson S J. Biofabrication, 2016, 8(2): 025007.
[80]
Zhang Y G, Zhang M M, Cheng D R, Xu S X, Du C, Xie L, Zhao W. Biomater. Sci., 2022, 10(6): 1423.
[81]
McClure M J, Wolfe P S, Simpson D G, Sell S A, Bowlin G L. Biomaterials, 2012, 33(3): 771.
[82]
Bosworth L A, Alam N, Wong J K, Downes S. J. Mater. Sci. Mater. Med., 2013, 24(6): 1605.
[83]
Eom S S, Park S M, Hong H J, Kwon J J, Oh S R, Kim J S, Kim D S. ACS Appl. Mater. Interfaces, 2020, 12(46): 51212.
[84]
Zou Y L, Shi L, Zhou Y, Yao L R. Tech. Text., 2014, 32(9): 22.
( 邹亚玲, 石琳, 周颖, 姚理荣. 产业用纺织品, 2014, 32(9): 22.)
[85]
Ozkal A, Callioglu F C. Applied Acoustics, 2020(11): 107468.
[86]
Bai W Y, Zong D D, Liu X Y, Wang F, Yin X, Yu J Y, Zhang S C, Ding B. J. Text. Inst., 2023(4):1.
[87]
Zhang X X, Wang F, Dou L Y, Cheng X T, Si Y, Yu J Y, Ding B. ACS Nano, 2020, 14(11): 15616.
[88]
Dong J H, Xie Y S, Liu L X, Deng Z Z, Liu W, Zhu L Y, Wang X Q, Xu D, Zhang G H. Adv. Eng. Mater., 2022, 24(8): 2101603.
[89]
Zhang H N, Xie Y X, Song Y, Qin X H. Colloids Surf., A, 2021, 624: 126834.
[90]
Chen X, Xu Y, Liang M, Ke Q, Fang Y, Xu H, Jin X, Huang C. J. Hazard. Mater., 2018, 347: 325.
[91]
Feng Z B, Long Z W, Yu T. J. Electrost., 2016, 83: 52.
[92]
Liu Z G, Wang P K. Aerosol. Sci. Technol., 1997, 26(4): 313.
[93]
Yu Y S, Tao Y B, Wang F L, Chen X, He Y L. Sep. Purif. Technol., 2020, 251: 117318.
[94]
Chen X, Xu Y, Zhang W X, Xu K L, Ke Q F, Jin X Y, Huang C. Nanoscale, 2019, 11(17): 8185.
[95]
Gao Y, Zhou Y S, Xiong W, Wang M M, Fan L S, Rabiee-Golgir H, Jiang L J, Hou W J, Huang X, Jiang L, Silvain J F, Lu Y F. ACS Appl. Mater. Interfaces, 2014, 6(8): 5924.
[96]
Liu S Z, Zhang Y, Fan L Y, Zhang Q, Zhou Y. Materials Reports, 2020, 34(17): 17099.
( 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 材料导报, 2020, 034(017): 17099.)
[97]
Venkatesan N, Yuvaraj P, Fathima N N. Mater. Chem. Phys., 2022, 286: 126190.
[98]
Song J N, Wang H Y, Li Z W, Long Y Z, Liu Z L, Wang H L, Li X Y, Fang M H, Li B, Wu H. Chem. Eng. J., 2018, 343: 638.
[99]
Tai M H, Tan B Y L, Juay J, Sun D D, Leckie J O. Chem. Eur. J., 2015, 21(14): 5395.
[100]
Mi H Y, Li H, Jing X, Zhang Q, Feng P Y, He P, Liu Y J. Sep. Purif. Technol., 2020, 241: 116700.
[101]
Bian Y, Liu K., Ran Y. Nat. Commun., 2022, 13: 7163.
[102]
Tropp J, Ihde M H, Williams A K, White N J, Eedugurala N, Bell N C, Azoulay J D, Bonizzoni M. Chem. Sci., 2019, 10(44): 10247.
[103]
Yang H Z, Ma C, Wei S J, Zhou Z L, Tian Z K. Adv. Text. Technol., 2023, 31(2): 256.
( 杨海贞, 马闯, 魏肃桀, 周泽林, 田征坤. 现代纺织技术, 2023, 31(2): 256.)
[104]
Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H. Adv. Mater., 2013, 25(46): 6692.
[105]
Wu X D, Han Y Y, Zhang X X, Zhou Z H, Lu C H. Adv. Funct. Mater., 2016, 26(34): 6246.
[106]
Han J W, Kim B, Li J, Meyyappan M. Appl. Phys. Lett., 2013, 102(5): 051903.
[107]
Yang G, Luo H J, Ding Y P, Yang J W, Li Y F, Ma C Q, Yan J, Zhuang X P. ACS Appl. Mater. Interfaces, 2023, 15(5): 7380.
[108]
Si Y, Yu J Y, Tang X M, Ge J L, Ding B. Nat. Commun., 2014, 5: 5802.
[109]
Zhang M, Wang Y, Zhang Y Y, Song J, Si Y, Yan J H, Ma C L, Liu Y T, Yu J Y, Ding B. Angew. Chem. Int. Ed., 2020, 59(51): 23252.
[110]
Xu T, Li X F, Liang Z P, Amar V S, Huang R Z, Shende R V, Fong H. Adv. Fiber Mater., 2020, 2(2): 74.

Funding

National Natural Science Foundation of China(51802347)
PDF(7293 KB)

Accesses

Citation

Detail

Sections
Recommended

/