Research Progress in Synthesis of Titanium-Based Organic Framework Materials

Suhui Liu, Feifei Zhang, Xiaoqing Wang, Puxu Liu, Jiangfeng Yang

Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1752-1763.

PDF(28902 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(28902 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1752-1763. DOI: 10.7536/PC230415
Review

Research Progress in Synthesis of Titanium-Based Organic Framework Materials

Author information +
History +

Abstract

As a kind of metal-organic framework (MOF) with high valence, titanium-based metal-organic framework (Ti-MOF) has superior chemical stability, appealing photoresponsive properties, low toxicity and so on. However, due to the high reactivity of titanium sources, it brings certain challenges to the synthesis of materials. In this paper, the research progress of Ti-MOF synthesis in recent years is reviewed, and the solvothermal synthesis, post-synthetic modification and in situ SBUs construction methods are introduced in detail. The topological types and crystal structures formed are analyzed, and the synthesis rules of Ti-MOF and the advantages and disadvantages of various methods are summarized. It is pointed out that the control of the metal source and coordination environment is the most important strategy to obtain Ti-MOF, and the construction of Ti-MOF by in-situ formation of SBUs and heterometallic Ti/M-MOF are prospected.

Contents

1 Introduction

2 Synthesis of Ti-MOF

2.1 Solvothermal synthesis

2.2 Post-synthetic modification

2.3 In situ SBUs construction methods

3 Conclusion and outlook

Key words

titanium-based MOFs / synthesis / solvothermal synthesis / post-synthetic modification

Cite this article

Download Citations
Suhui Liu , Feifei Zhang , Xiaoqing Wang , et al . Research Progress in Synthesis of Titanium-Based Organic Framework Materials[J]. Progress in Chemistry. 2023, 35(12): 1752-1763 https://doi.org/10.7536/PC230415

References

[1]
Eddaoudi M, MolerD B, Li H L, Chen B L, Reineke T M, O’Keeffe M, Yaghi O M. Acc. Chem. Res., 2001, 34(4): 319.
[2]
TranchemontagneD J, Mendoza-Cortés J L, O’Keeffe M, Yaghi O M. Chem. Soc. Rev., 2009, 38(5): 1257.
[3]
Wang H, Yuan X Z, Wu Y, Zeng G M, Chen X H, Leng L J, Li H. Appl. Catal. B Environ., 2015, 174/175: 445.
[4]
Wang H, Yuan X Z, Wu Y, Chen X H, Leng L J, Zeng G M. RSC Adv., 2015, 5(41): 32531.
[5]
Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Chem. A Eur. J., 2011, 17(24): 6643.
[6]
Mouchaham G, Cooper L, Guillou N, Martineau C, Elkaïm E, Bourrelly S, Llewellyn P L, Allain C, Clavier G, Serre C, Devic T. Angew. Chem. Int. Ed., 2015, 54(45): 13297.
[7]
Yuan S, Qin J S, Lollar C T, Zhou H C. ACS Cent. Sci., 2018, 4(4): 440.
[8]
Canivet J, Fateeva A, Guo Y M, Coasne B, Farrusseng D. Chem. Soc. Rev., 2014, 43(16): 5594.
[9]
Wang C H, Liu X L, KeserDemir N, Chen J P, Li K. Chem. Soc. Rev., 2016, 45(18): 5107.
[10]
Burtch N C, Jasuja H, Walton K S. Chem. Rev., 2014, 114(20): 10575.
[11]
Nguyen H L. J. Phys. Energy, 2021, 3(2): 021003.
[12]
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. J. Am. Chem. Soc., 2008, 130(42): 13850.
[13]
Nguyen H L. New J. Chem., 2017, 41(23): 14030.
[14]
Nasalevich M A, van der Veen M, Kapteijn F, Gascon J. CrystEngComm, 2014, 16(23): 4919.
[15]
Abedi S, Morsali A. New J. Chem., 2015, 39(2): 931.
[16]
Guillerm V, Gross S, Serre C, Devic T, Bauer M, Férey G. Chem. Commun., 2010, 46(5): 767.
[17]
Gao J K, Miao J W, Li P Z, Teng W Y, Yang L, Zhao Y L, Liu B, Zhang Q C. Chem. Commun., 2014, 50(29): 3786.
[18]
Dan-Hardi M, Serre C, Frot T, Rozes L, Maurin G, Sanchez C, Férey G. J. Am. Chem. Soc., 2009, 131(31): 10857.
[19]
Yuan S, Liu T F, FengD W, Tian J, Wang K C, Qin J S, Zhang Q, Chen Y P, Bosch M, Zou L F, Teat S J, Dalgarno S J, Zhou H C. Chem. Sci., 2015, 6(7): 3926.
[20]
Zou L F, FengD W, Liu T F, Chen Y P, Yuan S, Wang K C, Wang X, Fordham S, Zhou H C. Chem. Sci., 2016, 7(2): 1063.
[21]
Hendon C H, TianaD, Fontecave M, Sanchez C, D’arras L, Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A. J. Am. Chem. Soc., 2013, 135(30): 10942.
[22]
Nguyen H L, Gándara F, Furukawa H, Doan T L H, Cordova K E, Yaghi O M. J. Am. Chem. Soc., 2016, 138(13): 4330.
[23]
Li C Q, Xu H, Gao J K, Du W N, Shangguan L Q, Zhang X, Lin R B, Wu H, Zhou W, Liu X F, Yao J M, Chen B L. J. Mater. Chem. A, 2019, 7(19): 11928.
[24]
Castells-Gil J, Padial N M, Almora-Barrios N, Albero J, Ruiz-Salvador A R, González-Platas J, García H, Martí-Gastaldo C. Angew. Chem. Int. Ed., 2018, 57(28): 8453.
[25]
Castells-Gil J, Padial N M, Almora-Barrios N, Gil-San-Millán R, Romero-Ángel M, Torres V, da Silva I, Vieira B C J, Waerenborgh J C, Jagiello J, Navarro J A R, Tatay S, Martí-Gastaldo C. Chem., 2020, 6(11): 3118.
[26]
Sun Y Y, LuD F, Sun Y X, Gao M Y, Zheng N, Gu C, Wang F, Zhang J. ACS Mater. Lett., 2021, 3(1): 64.
[27]
Li H L, Eddaoudi M, O’Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276.
[28]
Serre C, Férey G. Inorg. Chem., 1999, 38(23): 5370.
[29]
Serre C, Groves J A, Lightfoot P, Slawin A M Z, Wright P A, Stock N, Bein T, Haouas M, Taulelle F, Férey G. Chem. Mater., 2006, 18(6): 1451.
[30]
Khaletskaya K, Pougin A, Medishetty R, Rösler C, Wiktor C, Strunk J, Fischer R A. Chem. Mater., 2015, 27(21): 7248.
[31]
Cai Y L, Zou L J, Ji Q H, Yong J Y, Qian X F, Gao J K. Polyhedron, 2020, 190: 114771.
[32]
Wang C, Liu C, He X, Sun Z M. Chem. Commun., 2017, 53(85): 11670.
[33]
Wang S J, Reinsch H, Heymans N, Wahiduzzaman M, Martineau-Corcos C, De Weireld G, Maurin G, Serre C. Matter, 2020, 2(2): 440.
[34]
Salcedo-Abraira P, Babaryk A A, Montero-Lanzuela E, Contreras-Almengor O R, Cabrero-Antonino M, Grape E S, Willhammar T, Navalón S, Elkäim E, García H, Horcajada P. Adv. Mater., 2021, 33(52): 2106627.
[35]
Assi H, Pardo Pérez L C, Mouchaham G, Ragon F, Nasalevich M, Guillou N, Martineau C, Chevreau H, Kapteijn F, Gascon J, Fertey P, Elkaim E, Serre C, Devic T. Inorg. Chem., 2016, 55(15): 7192.
[36]
Bueken B, Vermoortele F, VanpouckeD E P, Reinsch H, Tsou C C, Valvekens P, De Baerdemaeker T, Ameloot R, Kirschhock C E A, Van Speybroeck V, Mayer J M, De VosD. Angew. Chem. Int. Ed., 2015, 54(47): 13912.
[37]
Mason J A, Darago L E, Lukens W W Jr, Long J R. Inorg. Chem., 2015, 54(20): 10096.
[38]
Li Y F, Aschauer U, Chen J, Selloni A. Acc. Chem. Res., 2014, 47(11): 3361.
[39]
Wang S J, Kitao T, Guillou N, Wahiduzzaman M, Martineau-Corcos C, Nouar F, Tissot A, Binet L, Ramsahye N, Devautour-Vinot S, Kitagawa S, Seki S, Tsutsui Y, Briois V, Steunou N, Maurin G, Uemura T, Serre C. Nat. Commun., 2018, 9: 1660.
[40]
Lan G X, Ni K Y, Veroneau S S, Feng X Y, Nash G T, Luo T K, Xu Z W, Lin W B. J. Am. Chem. Soc., 2019, 141(10): 4204.
[41]
Padial N M, Castells-Gil J, Almora-Barrios N, Romero-Angel M, da Silva I, Barawi M, García-Sánchez A, de la Peña O’Shea V A, Martí-Gastaldo C. J. Am. Chem. Soc., 2019, 141(33): 13124.
[42]
Cadiau A, Kolobov N, Srinivasan S, Goesten M G, Haspel H, Bavykina A V, Tchalala M R, Maity P, Goryachev A, Poryvaev A S, Eddaoudi M, Fedin M V, Mohammed O F, Gascon J. Angew. Chem. Int. Ed., 2020, 59(32): 13468.
[43]
Zhu C F, Chen X, Yang Z W, Du X, Liu Y, Cui Y. Chem. Commun., 2013, 49(64): 7120.
[44]
Xuan W M, Ye C C, Zhang M N, Chen Z J, Cui Y. Chem. Sci., 2013, 4(8): 3154.
[45]
Hong K, Bak W, Chun H. Inorg. Chem., 2013, 52(10): 5645.
[46]
Hong K, Chun H. Chem. Commun., 2013, 49(93): 10953.
[47]
Hong K, Bak W, MoonD, Chun H. Cryst. GrowthDes., 2013, 13(9): 4066.
[48]
Gikonyo B, Montero-Lanzuela E, Baldovi H G, De S, Journet C, Devic T, Guillou N, TianaD, Navalon S, Fateeva A. J. Mater. Chem. A, 2022, 10(46): 24938.
[49]
Li M M, Yuan J W, Wang G, Yang L J, Shao J X, Li H, Lu J M. Sep. Purif. Technol., 2022, 298: 121658.
[50]
Padial N M, Lerma-Berlanga B, Almora-Barrios N, Castells-Gil J, da Silva I, de la Mata M, Molina S I, Hernández-Saz J, Platero-Prats A E, Tatay S, Martí-Gastaldo C. J. Am. Chem. Soc., 2020, 142(14): 6638.
[51]
Shultz A M, Sarjeant A A, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2011, 133(34): 13252.
[52]
Grancha T, Ferrando-Soria J, Zhou H C, Gascon J, Seoane B, Pasán J, Fabelo O, Julve M, Pardo E. Angew. Chem. Int. Ed., 2015, 54(22): 6521.
[53]
Li B J, Gui B, Hu G P, YuanD Q, Wang C. Inorg. Chem., 2015, 54(11): 5139.
[54]
Wang Z Q, Cohen S M. J. Am. Chem. Soc., 2007, 129(41): 12368.
[55]
Kim M, Cahill J F, Fei H H, Prather K A, Cohen S M. J. Am. Chem. Soc., 2012, 134(43): 18082.
[56]
Denny M S Jr, Parent L R, Patterson J P, Meena S K, Pham H, Abellan P, Ramasse Q M, Paesani F, Gianneschi N C, Cohen S M. J. Am. Chem. Soc., 2018, 140(4): 1348.
[57]
Brozek C K, Dincă M. J. Am. Chem. Soc., 2013, 135(34): 12886.
[58]
Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423(6941): 705.
[59]
Assi H, Mouchaham G, Steunou N, Devic T, Serre C. Chem. Soc. Rev., 2017, 46(11): 3431.
[60]
Nguyen H L, Vu T T, LeD, Doan T L H, Nguyen V Q, Phan N T S. ACS Catal., 2017, 7(1): 338.
[61]
Gao M Y, Wang Z R, Li Q H, LiD J, Sun Y Y, Andaloussi Y H, Ma C, Deng C H, Zhang J, Zhang L. J. Am. Chem. Soc., 2022, 144(18): 8153.
[62]
Lv H T, Li H M, Zou GD, Cui Y, Huang Y, Fan Y. Dalton Trans., 2018, 47(24): 8158.
[63]
Hong K, Bak W, Chun H. Inorg. Chem., 2014, 53(14): 7288.
[64]
Hong K, Chun H. Inorg. Chem., 2013, 52(17): 9705.
[65]
Keum Y, Park S, Chen Y P, Park J. Angew. Chem. Int. Ed., 2018, 57(45): 14852.
[66]
Wang S J, Cabrero-Antonino M, Navalón S, Cao C C, Tissot A, Dovgaliuk I, Marrot J, Martineau-Corcos C, Yu L, Wang H, Shepard W, García H, Serre C. Chem, 2020, 6(12): 3409.
[67]
Feng X Y, Song Y, Chen J S, Li Z, Chen E Y, Kaufmann M, Wang C, Lin W B. Chem. Sci., 2019, 10(7): 2193.
[68]
Castells-Gil J, Padial N M, Almora-Barrios N, da Silva I, MateoD, Albero J, García H, Martí-Gastaldo C. Chem. Sci., 2019, 10(15): 4313.

Funding

National Natural Science Foundation of China(21908153)
PDF(28902 KB)

Accesses

Citation

Detail

Sections
Recommended

/