Metal-Organic Frameworks and Their Derivative Nano Anode Materials

Haotian Ma, Rujin Tian, Zhongsheng Wen

Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1807-1846.

PDF(20710 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(20710 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1807-1846. DOI: 10.7536/PC230502
Review

Metal-Organic Frameworks and Their Derivative Nano Anode Materials

Author information +
History +

Abstract

Anode is one of the important components for lithium ion battery. Many technical bottlenecks (such as lower ionic-electronic conductivity, huge volume effect and easy pulverization resulted from long-term charge/discharge process) prevent the development and large scale application of traditional anode materials. As a novel kind of advanced multi-functional materials, Metal-organic frameworks (MOFs) and their derivative materials behave enough pore structures promoting rapid migration of Li+ and electron, and high specific surface areas providing abundant active sites for electrochemical reaction. Importantly, tunable structure and chemical composition of the MOFs and their derivative materials can be further optimized by changing parameters of synthesis process, thereby markedly increases specific capacity and cycle stability of lithium ion batteries. Herein, the recent progress in the MOFs and their derivative materials used as anode for lithium ion batteries are reviewed systematically, and the relationships between their preparation methods, microstructures, morphologies and corresponding electrochemical properties are summarized detailly. The urgent problems and challenges of this class of anode materials for lithium ion batteries are also analyzed. On the basis of resonable choosing organic ligands and metal centers, some effective measures for improving performances of lithium storage are proposed by combining with the variability and particularity of structure of the MOFs and their derivative materials, and the feasible strategies for commercialization application are suggested. Finally, the perspective and future development in design and fabrication of the new types of nano porous anodes with high energy efficiencies in relation with the next generation lithium ion battery are further discussed.

Contents

1 Introduction

1.1 Conversion mechanism

1.2 Insertion/extraction mechanism

1.3 Absorption/desorption mechanism

2 Pristine MOFs

2.1 Co-MOFs

2.2 Zn-MOFs

2.3 Mn-MOFs

2.4 Fe-MOFs

2.5 Ni-MOFs

2.6 Cu-MOFs

2.7 Sn-MOFs

2.8 Other metal-based MOFs

3 MOFs-derived metal compounds

3.1 Monometal oxides

3.2 Bimetal oxides

3.3 Other metal compounds

4 MOFs-derived porous carbon

5 MOFs-derived composites

5.1 MOFs/metal compounds

5.2 MOFs/carbon-based materials

5.3 metal oxide/Metal oxide

5.4 Metal oxide/carbon-based materials

5.5 Metal sulfide/carbon-based materials

5.6 Other metal compound/carbon-based materials

5.7 metal/metal oxide/carbon-based materials

6 Conclusion and outlook

Key words

lithium ion battery / anode / metal-organic frameworks / derivative materials

Cite this article

Download Citations
Haotian Ma , Rujin Tian , Zhongsheng Wen. Metal-Organic Frameworks and Their Derivative Nano Anode Materials[J]. Progress in Chemistry. 2023, 35(12): 1807-1846 https://doi.org/10.7536/PC230502

References

[1]
Zhong M, Kong L J, Li N, Liu Y Y, Zhu J, Bu X H. Coord. Chem. Rev., 2019, 388: 172.
[2]
Jiang J, Li Y Y, Liu J P, Huang X T, Yuan C Z, David Lou X W. Adv. Mater., 2012, 24(38): 5166.
[3]
Lux L, Williams K, Ma S Q. CrystEngComm, 2015, 17(1): 10.
[4]
Jiang Y, Yue J L, Guo Q B, Xia Q Y, Zhou C, Feng T, Xu J, Xia H. Small, 2018, 14(19): 1704296.
[5]
Li Z J, Du Z, Zhang J, Chen J W, Wang G, Wang R L. Prog. Chem., 2019, 31(1): 201.
(李振杰, 钟杜, 张洁, 陈金伟, 王刚, 王瑞林. 化学进展, 2019, 31: 201.).
[6]
Zhao Y, Kang Y, Jin Y, Wang L, Tian G, He X. Prog. Chem., 2019, 31: 613.
(赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 化学进展, 2019, 31: 613.).
[7]
Li X X, Cheng F Y, Zhang S N, Chen J. J. Power Sources, 2006, 160(1): 542.
[8]
C, Lin Y, Zhao Y, Wang JinD, Chen L, Shen C. Mater. Sci. Technol., 2017, 33(8): 768.
[9]
Shin J, Kim M, Cirera J, Chen S, Halder G J, Yersak T A, Paesani F, Cohen S M, Meng Y S. J. Mater. Chem. A, 2015, 3(8): 4738.
[10]
Li C, Hu X S, Lou X B, Zhang L J, Wang Y, Amoureux J P, Shen M, Chen Q, Hu B W. J. Mater. Chem. A, 2016, 4(41): 16245.
[11]
Xiao T, Jin J, Zhang Y F, Xi W, Wang R, Gong Y S, He B B, Wang H W. Electrochim. Acta, 2022, 427: 140851.
[12]
Matei Ghimbeu C, GÓrka J, Simone V, Simonin L, Martinet S, Vix-Guterl C. Nano Energy, 2018, 44: 327.
[13]
Nie P, Shen L F, Luo H F, Ding B, Xu G Y, Wang J, Zhang X G. J. Mater. Chem. A, 2014, 2(16): 5852.
[14]
An T C, Wang Y H, Tang J, Wang Y, Zhang L J, Zheng G F. J. Colloid Interface Sci., 2015, 445: 320.
[15]
Zhao C C, Shen C, Han W Q. RSC Adv., 2015, 5(26): 20386.
[16]
Lin X M, Niu J L, Lin J, Wei L M, Hu L, Zhang G, Cai Y P. Inorg. Chem., 2016, 55(17): 8244.
[17]
Lin X M, Niu J L, ChenD N, Lu Y N, Zhang G, Cai Y P. CrystEngComm, 2016, 18(36): 6841.
[18]
Hu L, Lin X M, Mo J T, Lin J, Gan H L, Yang X L, Cai Y P. Inorg. Chem., 2017, 56(8): 4289.
[19]
Li C, Lou X B, Shen M, Hu X S, Guo Z, Wang Y, Hu B W, Chen Q. ACS Appl. Mater. Interfaces, 2016, 8(24): 15352.
[20]
Chen L, Yang W J, Wang J B, Chen C R, Wei MD. Chem. A Eur. J., 2018, 24(50): 13362.
[21]
Xing J J, Shi F N, XueD F. Chem. Res., 2020, 31(2): 95.
(邢锦娟, 史发年, 薛冬峰. 化学研究, 2020, 31(2): 95.).
[22]
Ning Y Q, Lou X B, Li C, Hu X S, Hu B W. Chem. A Eur. J., 2017, 23(63): 15984.
[23]
Li G H, Yang H, Li F C, Cheng F Y, Shi W, Chen J, Cheng P. Inorg. Chem., 2016, 55(10): 4935.
[24]
Liao Y X, Li C, Lou X B, Wang P, Yang Q, Shen M, Hu B W. J. Colloid Interface Sci., 2017, 506: 365.
[25]
Wang P, Lou X B, Li C, Hu X S, Yang Q, Hu B W. Nano Micro Lett., 2018, 10(2): 19.
[26]
GeD H, Peng J, Qu G L, Geng H B, Deng Y Y, Wu J J, Cao X Q, Zheng J W, Gu H W. New J. Chem., 2016, 40(11): 9238.
[27]
Wang L P, Zhao M J, Qiu J L, Gao P, Xue J, Li J Z. Energy Technol., 2017, 5(4): 637.
[28]
Gou L, Hao L M, Shi Y X, Ma S L, Fan X Y, Xu L, LiD L, Wang K. J. Solid State Chem., 2014, 210(1): 121.
[29]
Fei H L, Liu X, Li Z W. Chem. Eng. J., 2015, 281: 453.
[30]
Saravanan K, Nagarathinam M, Balaya P, Vittal J J. J. Mater. Chem., 2010, 20(38): 8329.
[31]
Lin Y C, Zhang Q J, Zhao C C, Li H L, Kong C L, Shen C, Chen L. Chem. Commun., 2015, 51(4): 697.
[32]
Liu Q, Yu L L, Wang Y, Ji Y Z, Horvat J, Cheng M L, Jia X Y, Wang G X. Inorg. Chem., 2013, 52(6): 2817.
[33]
Fei H L, Liu X, Li Z W, Feng W J. Electrochim. Acta, 2015, 174: 1088.
[34]
Maiti S, Pramanik A, Manju U, Mahanty S. ACS Appl. Mater. Interfaces, 2015, 7(30): 16357.
[35]
Xiong P X, Zeng G J, Zeng L X, Wei MD. Dalton Trans., 2015, 44(38): 16746.
[36]
Hu H P, Lou X B, Li C, Hu X S, Li T, Chen Q, Shen M, Hu B W. New J. Chem., 2016, 40(11): 9746.
[37]
Reinsch H, Stock N. CrystEngComm, 2013, 15(3): 544.
[38]
Li C, Hu X S, Tong W, Yan W S, Lou X B, Shen M, Hu B W. ACS Appl. Mater. Interfaces, 2017, 9(35): 29829.
[39]
FÉrey G, Millange F, Morcrette M, Serre C, Doublet M L, Grenèche J M, Tarascon J M. Angew. Chem. Int. Ed., 2007, 46(18): 3259.
[40]
de Combarieu G, Morcrette M, Millange F, Guillou N, Cabana J, Grey C P, Margiolaki I, FÉrey G, Tarascon J M. Chem. Mater., 2009, 21(8): 1602.
[41]
Fateeva A, Horcajada P, Devic T, Serre C, Marrot J, Grenèche J M, Morcrette M, Tarascon J M, Maurin G, FÉrey G. Eur. J. Inorg. Chem., 2010, 2010(24): 3789.
[42]
Hu X S, Lou X B, Li C, Ning Y Q, Liao Y X, Chen Q, Mananga E S, Shen M, Hu B W. RSC Adv., 2016, 6(115): 114483.
[43]
Du J. MasteralDissertation of Xi’an University of Science and Technology, 2017.
(杜婕. 西安科技大学硕士论文, 2017.).
[44]
Shen L S, Song H W, Wang C X. Electrochim. Acta, 2017, 235: 595.
[45]
Lou X B, Hu H P, Li C, Hu X S, Li T, Shen M, Chen Q, Hu B W. RSC Adv., 2016, 6(89): 86126.
[46]
Zhang Y, Niu Y B, Liu T, Li Y T, Wang M Q, Hou J K, Xu M W. Mater. Lett., 2015, 161: 712.
[47]
Park K S, Ni Z, CôtÉ A P, Choi J Y, Huang RD, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(27): 10186.
[48]
Senthil Kumar R, Nithya C, Gopukumar S, Anbu Kulandainathan M. Energy Technol., 2014, 2(11): 921.
[49]
Maiti S, Pramanik A, Manju U, Mahanty S. Microporous Mesoporous Mater., 2016, 226: 353.
[50]
Hu X S. DoctoralDissertation of East China Normal University, 2018.
(胡小诗. 华东师范大学博士论文, 2018.).
[51]
Wu N, Wang W, Kou L Q, Zhang X, Shi Y R, Li T H, Li F, Zhou J M, Wei Y. Chem. A Eur. J., 2018, 24(24): 6330.
[52]
Wu N, Jia T, Shi Y R, Yang Y J, Li T H, Li F, Wang Z. Ionics, 2020, 26(3): 1547.
[53]
Wang Y, Qu Q T, Liu G, Battaglia V S, Zheng H H. Nano Energy, 2017, 39: 200.
[54]
Xia S B, Yu S W, Yao L F, Li F S, Li X, Cheng F X, Shen X, Sun C K, Guo H, Liu J J. Electrochim. Acta, 2019, 296: 746.
[55]
Han X Y, Yi F, Sun T L, Sun J T. Electrochem. Commun., 2012, 25: 136.
[56]
Guo L Z, Sun J F, Zhang W H, Hou L R, Liang L W, Liu Y, Yuan C Z. ChemSusChem, 2019, 12(22): 5051.
[57]
Guo L Z, Sun J F, Sun X, Zhang J Y, Hou L R, Yuan C Z. Nanoscale Adv., 2019, 1(12): 4688.
[58]
Yan J, Cui Y T, Xie M, Yang G Z, BinD S, LiD. Angew. Chem. Int. Ed., 2021, 60(46): 24467.
[59]
Mao P C, Fan H L, Liu C, Lan G X, Huang W, Li Z P, Mahmoud H, Zheng R G, Wang Z Y, Sun H Y, Liu Y G. Sustain. Energy Fuels, 2022, 6(17): 4075.
[60]
Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Chem. Soc. Rev., 2016, 45(12): 3479.
[61]
Yao Y, Hou H Y, Liu X X, Tian C, Meng K, Lan J, Xu J L, Feng M M. J. Synth. Cryst., 2020, 49(7): 1242.
(姚远, 侯宏英, 刘显茜, 田川, 孟堃, 兰建, 徐加雷, 冯蒙蒙. 人工晶体学报, 2020, 49(7): 1242.).
[62]
Wu R B, Qian X K, Yu F, Liu H, Zhou K, Wei J, Huang Y Z. J. Mater. Chem. A, 2013, 1(37): 11126.
[63]
Xiao X L, Liu X F, Zhao H, ChenD F, Liu F Z, Xiang J H, Hu Z B, Li YD. Adv. Mater., 2012, 24(42): 5762.
[64]
Banerjee A, Singh U, Aravindan V, Srinivasan M, Ogale S. Nano Energy, 2013, 2(6): 1158.
[65]
Hu X S, Li C, Lou X B, Yang Q, Hu B W. J. Mater. Chem. A, 2017, 5(25): 12828.
[66]
Zhang B W, Hao S J, XiaoD R, Wu J S, Huang Y Z. Mater.Des., 2016, 98: 319.
[67]
Bai Z C, Zhang Y H, Zhang Y W, Guo C L, Tang B, SunD. J. Mater. Chem. A, 2015, 3(10): 5266.
[68]
Cao K Z, Jiao L F, Xu H, Liu H Q, Kang H Y, Zhao Y, Liu Y C, Wang Y J, Yuan H T. Adv. Sci., 2016, 3(3): 1500185.
[69]
Zheng F C, Xu S H, Yin Z C, Zhang Y G, Lu L. RSC Adv., 2016, 6(96): 93532.
[70]
Hu X S, Lou X B, Li C, Yang Q, Chen Q, Hu B W. ACS Appl. Mater. Interfaces, 2018, 10(17): 14684.
[71]
Liu B, Zhang X B, Shioyama H, Mukai T, Sakai T, Xu Q. J. Power Sources, 2010, 195(3): 857.
[72]
Li X, Tian XD, Yang T, Song Y, Liu Y M, Guo Q G, Liu Z J. J. Alloys Compd., 2018, 735: 2446.
[73]
Li A, Zhong M, Shuang W, Wang C P, Liu J, Chang Z, Bu X H. Inorg. Chem. Front., 2018, 5(7): 1602.
[74]
Zheng F C, Yin Z C, Xia H Y, Zhang Y G. Mater. Lett., 2017, 197: 188.
[75]
Han Y, Zhao M L, Dong L, Feng J M, Wang Y J, LiD J, Li X F. J. Mater. Chem. A, 2015, 3(45): 22542.
[76]
Hu L, Yan N, Chen Q W, Zhang P, Zhong H, Zheng X R, Li Y, Hu X Y. Chem. A Eur. J., 2012, 18(29): 8971.
[77]
Li C, Chen T Q, Xu W J, Lou X B, Pan L K, Chen Q, Hu B W. J. Mater. Chem. A, 2015, 3(10): 5585.
[78]
Gou L, Ma L, Zhao M J, Liu P G, Wang XD, Fan X Y, LiD L. J. Mater. Sci., 2019, 54(2): 1529.
[79]
Zhang L M, Yan B, Zhang J H, Liu Y J, Yuan A H, Yang G. Ceram. Int., 2016, 42(4): 5160.
[80]
Su P P, Liao S C, Rong F, Wang F Q, Chen J, Li C, Yang Q H. J. Mater. Chem. A, 2014, 2(41): 17408.
[81]
Shao J, Wan Z M, Liu H M, Zheng H Y, Gao T, Shen M, Qu Q T, Zheng H H. J. Mater. Chem. A, 2014, 2(31): 12194.
[82]
Li J F, Wang J Z, Liang X, Zhang Z J, Liu H K, Qian Y T, Xiong S L. ACS Appl. Mater. Interfaces, 2014, 6(1): 24.
[83]
Wang J Y, Yang N L, Tang H J, Dong Z H, Jin Q, Yang M, Kisailus D, Zhao H J, Tang Z Y, Wang D. Angew. Chem., 2013, 125(25): 6545.
[84]
Xu XD, Cao R G, Jeong S, Cho J. Nano Lett., 2012, 12(9): 4988.
[85]
Banerjee A, Aravindan V, Bhatnagar S, MhamaneD, Madhavi S, Ogale S. Nano Energy, 2013, 2(5): 890.
[86]
Guo W X, Sun W W, Lv L P, Kong S F, Wang Y. ACS Nano, 2017, 11(4): 4198.
[87]
Zhang L, Wu H B, Madhavi S, Hng H H, David Lou X W. J. Am. Chem. Soc., 2012, 134(42): 17388.
[88]
Soundharrajan V, Sambandam B, Song J J, Kim S, Jo J, Duong P T, Kim S, Mathew V, Kim J. J. Energy Chem., 2018, 27(1): 300.
[89]
Zhang F, JiangD G, Zhang X G. Nano Struct. Nano Objects, 2016, 5: 1.
[90]
Xu J M, Tang H B, Xu T T, WuD, Shi Z F, Tian Y T, Li X J. Ionics, 2017, 23(12): 3273.
[91]
Bi Z H, Paranthaman M P, Guo B K, Unocic R R, Meyer H M, Bridges C A, Sun X G, Dai S. J. Mater. Chem. A, 2014, 2(6): 1818.
[92]
Mai Y Y, Zhang F, Feng X L. Nanoscale, 2014, 6(1): 106.
[93]
Lee S, Ha J, Choi J, Song T, Lee J W, Paik U. ACS Appl. Mater. Interfaces, 2013, 5(22): 11525.
[94]
Hao B, Yan Y, Wang X B, Chen G. ACS Appl. Mater. Interfaces, 2013, 5(13): 6285.
[95]
Wang Z Q, Li X, Xu H, Yang Y, Cui Y J, Pan H G, Wang Z Y, Chen B L, Qian GD. J. Mater. Chem. A, 2014, 2(31): 12571.
[96]
Zhang W B, Pang H C, Sun W W, Lv L P, Wang Y. Electrochem. Commun., 2017, 84: 80.
[97]
Wang X X, Xue H J, Na Z L, YinD M, Li Q, Wang C L, Wang L M, Huang G. J. Power Sources, 2018, 396: 659.
[98]
Wang CD, Li Y, Ruan Y J, Jiang J J, Wu Q H. Mater. Today Energy, 2017, 3: 1.
[99]
Xiong Q Q, Tu J P, Shi S J, Liu X Y, Wang X L, Gu CD. J. Power Sources, 2014, 256: 153.
[100]
Xing Z, Ju Z C, Yang J, Xu H Y, Qian Y T. Electrochim. Acta, 2013, 102: 51.
[101]
Yang L G, Wang X, Zheng F C. J. Mater. Sci. Mater. Electron., 2019, 30(17): 16687.
[102]
Du J C, Tang Y H, Wang Y, Shi P H, Fan J C, Xu Q J, Min Y L. Dalton Trans., 2018, 47(22): 7571.
[103]
Zheng F C, ZhuD Q, Shi X H, Chen Q W. J. Mater. Chem. A, 2015, 3(6): 2815.
[104]
Wu L L, Wang Z, Long Y, Li J, Liu Y, Wang Q S, Wang X, Song S Y, Liu X G, Zhang H J. Small, 2017, 13(17): 1604270.
[105]
Wu R B, Qian X K, Zhou K, Wei J, Lou J, Ajayan P M. ACS Nano, 2014, 8(6): 6297.
[106]
Guo H, Li T T, Chen W W, Liu L X, Yang X J, Wang Y P, Guo Y C. Nanoscale, 2014, 6(24): 15168.
[107]
Guo H, Li T T, Chen W W, Liu L X, Qiao J L, Zhang J J. Sci. Rep., 2015, 5: 13310.
[108]
Li H, Liang M, Sun W W, Wang Y. Adv. Funct. Mater., 2016, 26(7): 982.
[109]
Chen C, Qian S, Ding Y, Yao T H, Guo J H, Wang H K. J. Funct. Mater., 2020, 51(10): 10116.
(陈川, 钱森, 丁一, 姚天浩, 郭经红, 王红康. 功能材料, 2020, 51(10): 10116.).
[110]
Yu L, Yang J F, David Lou X W. Angew. Chem. Int. Ed., 2016, 128(43): 13620.
[111]
Zhou Y L, YanD, Xu H Y, Feng J K, Jiang X L, Yue J, Yang J, Qian Y T. Nano Energy, 2015, 12: 528.
[112]
Sennu P, Christy M, Aravindan V, Lee Y G, Nahm K S, Lee Y S. Chem. Mater., 2015, 27(16): 5726.
[113]
Duan J L, Zou Y L, Li Z Y, Long B. Powder Technol., 2019, 354: 834.
[114]
Liu F, Song S Y, XueD F, Zhang H J. Adv. Mater., 2012, 24(8): 1089.
[115]
Oktaviano H S, Yamada K, Waki K. J. Mater. Chem., 2012, 22(48): 25167.
[116]
Zhang H B, Nai J W, Yu L, David Lou X W. Joule, 2017, 1(1): 77.
[117]
Zhang Y, Sha M, Fu Q, Zhao H, Lei Y. Mater. Today Sustain., 2022, 18: 100156.
[118]
Chen Y Y, Du W Q, Dou B X, Chen J H, Hu L, Zeb A, Lin X M. CrystEngComm, 2022, 24(15): 2729.
[119]
Zuo L, Chen S H, Wu J F, Wang L, Hou H Q, Song Y H. RSC Adv., 2014, 4(106): 61604.
[120]
Takamura T, Awano H, Ura T, Sumiya K. J. Power Sources, 1997, 68(1): 114.
[121]
Li A, Tong Y, Cao B, Song H H, Li Z H, Chen X H, Zhou J S, Chen G, Luo H M. Sci. Rep., 2017, 7: 40574.
[122]
Turon Teixidor G, Park B Y, Mukherjee P P, Kang Q, Madou M J. Electrochim. Acta, 2009, 54(24): 5928.
[123]
Park B Y, Zaouk R, Wang C L, Madou M J. J. Electrochem. Soc., 2007, 154(2): P1.
[124]
Luo Y M, Sun L, Xu F, Wang Z Q. Key Eng. Mater., 2017, 727: 705.
[125]
Peng H J, Hao G X, Chu Z H, Lin Y W, Lin X M, Cai Y P. RSC Adv., 2017, 7(54): 34104.
[126]
Zheng G X, Chen M H, Zhang H R, Zhang J W, Liang X Q, Qi M L, Yin J H. Surf. Coat. Technol., 2019, 359: 384.
[127]
Shen C, Zhao C C, Xin F X, Cao C, Han W Q. Electrochim. Acta, 2015, 180: 852.
[128]
Chu K N, Hu M L, Song B, Chen S L, Li J Y, Zheng F C, Li Z Q, Li R, Zhou J Y. RSC Adv., 2023, 13(9): 5634.
[129]
He X L, Cai Y Q, Zhao W, Zhuang Q C, Ju Z C. J. Phys. Chem. Solids, 2020, 147: 109639.
[130]
Shi X Z, Gong J, Kierzek K, Michalkiewicz B, Zhang S, Chu P K, Chen X C, Tang T, Mijowska E. New J. Chem., 2019, 43(26): 10405.
[131]
Tong Y L, Ji D, Wang P, Zhou H, Akhtar K, Shen X P, Zhang J H, Yuan A H. RSC Adv., 2017, 7(40): 25182.
[132]
Yang Y, Zheng F C, Xia G L, Lun Z Y, Chen Q W. J. Mater. Chem. A, 2015, 3(36): 18657.
[133]
Mao Y, Duan H, Xu B, Zhang L, Hu Y S, Zhao C C, Wang Z X, Chen L Q, Yang Y S. Energy Environ. Sci., 2012, 5(7): 7950.
[134]
Yu Y X. Phys. Chem. Chem. Phys., 2013, 15(39): 16819.
[135]
Zheng F C, Yang Y, Chen Q W. Nat. Commun., 2014, 5: 5261.
[136]
Cao N, Du H L, Wang J L, Ma W X, Ma W L, Tian C. J. Chin. Ceram. Soc., 2018, 46(12): 1748.
(曹娜, 杜慧玲, 王金磊, 马武祥, 马万里, 田超. 硅酸盐学报, 2018, 46(12): 1748.).
[137]
Li G H, Li F C, Yang H, Cheng F Y, Xu N, Shi W, Cheng P. Inorg. Chem. Commun., 2016, 64: 63.
[138]
Gao G L, WangD Y, Zeng Q, Shen C. J. South China Norm. Univ. Nat. Sci. Ed., 2018, 50(2): 30.
(高国梁, 王德宇, 曾群, 沈彩. 华南师范大学学报(自然科学版), 2018, 50(2): 30.).
[139]
HongD Y, Hwang Y K, Serre C, FÉrey G, Chang J S. Adv. Funct. Mater., 2009, 19(10): 1537.
[140]
Wei R P, Dong Y T, Zhang Y Y, Zhang R, Al-Tahan M A, Zhang J M. J. Colloid Interface Sci., 2021, 582: 236.
[141]
Jin Y, Zhao C C, Sun Z X, Lin Y C, Chen L, WangD Y, Shen C. RSC Adv., 2016, 6(36): 30763.
[142]
Zhang C H, Hu W Q, Jiang H, Chang J K, Zheng M S, Wu Q H, Dong Q F. Electrochim. Acta, 2017, 246: 528.
[143]
Li C, Lou X B, Yang Q, Zou Y M, Hu B W. Chem. Eng. J., 2017, 326: 1000.
[144]
Wang J, Polleux J, Lim J, Dunn B. J. Phys. Chem. C, 2007, 111(40): 14925.
[145]
He S H, Li Z P, Ma L M, Wang J Q, Yang S R. New J. Chem., 2017, 41(23): 14209.
[146]
Vermoortele F, Vandichel M, van de Voorde B, Ameloot R, Waroquier M, van Speybroeck V, de VosD E. Angew. Chem. Int. Ed., 2012, 51(20): 4887.
[147]
Zhu W, Chen Z, Pan Y, Dai R Y, Wu Y, Zhuang Z B, WangD S, Peng Q, Chen C, Li YD. Adv. Mater., 2019, 31(38): 1800426.
[148]
Sun X M, Gao G, YanD W, Feng C Q. Appl. Surf. Sci., 2017, 405: 52.
[149]
Zheng X Z, Li Y F, Xu Y X, Hong Z S, Wei MD. CrystEngComm, 2012, 14(6): 2112.
[150]
Wang B X, Wang Z Q, Cui Y J, Yang Y, Wang Z Y, Qian GD. RSC Adv., 2015, 5(103): 84662.
[151]
Wang P, Shen M Q, Zhou H, Meng C F, Yuan A H. Small, 2019, 15(47): 1903522.
[152]
Kang Y, Zhang Y H, Shi Q, Shi H W, XueD F, Shi F N. J. Colloid Interface Sci., 2021, 585: 705.
[153]
Zhang L, Wu H B, David Lou X W. J. Am. Chem. Soc., 2013, 135(29): 10664.
[154]
Li J B, YanD, Hou S J, Lu T, Yao Y F, ChuaD H C, Pan L K. Chem. Eng. J., 2018, 335: 579.
[155]
Xu W W, Cui XD, Xie Z Q, Dietrich G, Wang Y. Electrochim. Acta, 2016, 222: 1021.
[156]
Hu L, Huang Y M, Zhang F P, Chen Q W. Nanoscale, 2013, 5(10): 4186.
[157]
Guo W X, Sun W W, Wang Y. ACS Nano, 2015, 9(11): 11462.
[158]
Wang B X, Wang Z Q, Cui Y J, Yang Y, Wang Z Y, Chen B L, Qian GD. Microporous Mesoporous Mater., 2015, 203: 86.
[159]
WangD P, Fu M S, Ha Y, Wang H, Wu R B. J. Colloid Interface Sci., 2018, 529: 265.
[160]
Yang X, Tang Y B, Huang X, Xue H T, Kang W P, Li W Y, Ng T W, Lee C S. J. Power Sources, 2015, 284: 109.
[161]
Zhang S L, Guan B Y, Wu H B, David Lou X W. Nano Micro Lett., 2018, 10(3): 44.
[162]
Lu Y, Yu L, Wu M, Wang Y, David Lou X W. Adv. Mater., 2018, 30(1): 1702875.
[163]
Huang G, Zhang F F, Zhang L L, Du X C, Wang J W, Wang L M. J. Mater. Chem. A, 2014, 2(21): 8048.
[164]
Huang G, Zhang L L, Zhang F F, Wang L M. Nanoscale, 2014, 6(10): 5509.
[165]
Zhong M, YangD H, Kong L J, Shuang W, Zhang Y H, Bu X H. Dalton Trans., 2017, 46(45): 15947.
[166]
Xu X H, Cao K Z, Wang Y J, Jiao L F. J. Mater. Chem. A, 2016, 4(16): 6042.
[167]
Huang G, YinD M, Wang L M. J. Mater. Chem. A, 2016, 4(39): 15106.
[168]
Hou L R, Lian L, Zhang L H, Pang G, Yuan C Z, Zhang X G. Adv. Funct. Mater., 2015, 25(2): 238.
[169]
Yang X, Xue H T, Yang QD, Yuan R, Kang W P, Lee C S. Chem. Eng. J., 2017, 308: 340.
[170]
CaiD P, Zhan H B, Wang T H. Mater. Lett., 2017, 197: 241.
[171]
Wu Y Z, Meng J S, Li Q, Niu C J, Wang X P, Yang W, Li W, Mai L Q. Nano Res., 2017, 10(7): 2364.
[172]
Zhao K N, Liu F N, Niu C J, Xu W W, Dong Y F, Zhang L, Xie S M, Yan M Y, Wei Q L, ZhaoD Y, Mai L Q. Adv. Sci., 2015, 2(12): 1500154.
[173]
Liu L X, Guo H, Liu J J, Qian F, Zhang C H, Li T T, Chen W W, Yang X J, Guo Y C. Chem. Commun., 2014, 50(67): 9485.
[174]
Zhang J, Chu R X, Chen Y L, Jiang H, Zeng Y B, Chen X, Zhang Y, Huang N M, Guo H. J. Alloys Compd., 2019, 797: 83.
[175]
Peng H J, Hao G X, Chu Z H, He C L, Lin X M, Cai Y P. J. Alloys Compd., 2017, 727: 1020.
[176]
Yin H, Yu X X, Li Q W, Cao M L, Zhang W, Zhao H, Zhu M Q. J. Alloys Compd., 2017, 706: 97.
[177]
Peng H J, Hao G X, Chu Z H, Lin J, Lin X M, Cai Y P. Cryst. GrowthDes., 2017, 17(11): 5881.
[178]
Sambandam B, Soundharrajan V, Song J J, Kim S, Jo J, TungD P, Kim S, Mathew V, Kim J. Inorg. Chem. Front., 2016, 3(12): 1609.
[179]
Tang B. MasteralDissertation of Beijing University of Chemical Technology, 2017.
(唐波. 北京化工大学硕士论文, 2017.).
[180]
SunD, Tang Y G, YeD L, Yan J, Zhou H S, Wang H Y. ACS Appl. Mater. Interfaces, 2017, 9(6): 5254.
[181]
Yang T, Liu Y G, Huang Z H, Liu J W, Bian P J, Ling CD, Liu H, Wang G X, Zheng R K. J. Alloys Compd., 2018, 735: 1079.
[182]
Yang S J, Nam S, Kim T, Im J H, Jung H, Kang J H, Wi S, Park B, Park C R. J. Am. Chem. Soc., 2013, 135(20): 7394.
[183]
Wang H B, Pan Q M, Cheng Y X, Zhao J W, Yin G P. Electrochim. Acta, 2009, 54(10): 2851.
[184]
Jamnik J, Maier J. Phys. Chem. Chem. Phys., 2003, 5(23): 5215.
[185]
Farrusseng D, Aguado S, Pinel C. Angew. Chem. Int. Ed., 2009, 48(41): 7502.
[186]
Chen Y Q, Zheng L, Fu Y Y, Zhou R H, Song Y H, Chen S H. RSC Adv., 2016, 6(89): 85917.
[187]
Yang L, Tian Y, Ge P, Zhao G G, Pu T C, Yang Y C, Zou G Q, Hou H S, Huang L P, Ji X B. ChemElectroChem, 2018, 5(22): 3426.
[188]
Zhao L, Liu W, Liu S, Wang J F, Wang H L, Chen J X. J. Mater. Chem. A, 2015, 3(27): 14210.
[189]
Wang M H, Yang H, Zhou X L, Shi W, Zhou Z, Cheng P. Chem. Commun., 2016, 52(4): 717.
[190]
Jin L N, Zhao X S, Qian X Y, Wang S W, Shen X Q, Dong MD. Mater. Lett., 2017, 199: 176.
[191]
Xu H J, Wang L, Zhong J, Wang T, Cao J H, Wang Y Y, Li X Q, Fei H L, Zhu J, Duan XD. Energy Environmental Mater., 2020, 3(2): 177.
[192]
Huang G, Zhang F F, Du X C, Qin Y L, YinD M, Wang L M. ACS Nano, 2015, 9(2): 1592.
[193]
Zou Y L, Qi Z G, Ma Z S, Jiang W J, Hu R W, Duan J L. J. Electroanal. Chem., 2017, 788: 184.
[194]
Xu Y Q, Hou S J, Yang G, Lu T, Pan L K. J. Solid State Electrochem., 2018, 22(3): 785.
[195]
Chen Y, Yu L, David Lou X. Angew. Chem. Int. Edit., 2016, 55(20): 5990.
[196]
Wang F X, Han Q G, Yi Z, GengD, Li X, Wang Z, Wang L M. J. Electroanal. Chem., 2017, 807: 196.
[197]
JiD, Zhou H, Tong Y L, Wang J P, Zhu M Z, Chen T H, Yuan A H. Chem. Eng. J., 2017, 313: 1623.
[198]
Shao J X, Zhou H, Feng J H, Zhu M Z, Yuan A H. J. Alloys Compd., 2019, 784: 869.
[199]
Zhang L, Liu W X, Shi W H, Xu X L, Mao J, Li P, Ye C Z, Yin R L, Ye S F, Liu X Y, Cao X H, Gao C. Chem. A Eur. J., 2018, 24(52): 13689.
[200]
YinD M, Huang G, Sun Q J, Li Q, Wang X X, YuanD X, Wang C L, Wang L M. Electrochim. Acta, 2016, 215: 410.
[201]
Tian S Y, Zheng G X, Liu Q, Ren M Y, Yin J H. Int. J. Electrochem. Sci., 2019, 14(10): 9459.
[202]
Niu J L, Hao G X, Lin J, He X B, Sathishkumar P, Lin X M, Cai Y P. Inorg. Chem., 2017, 56(16): 9966.
[203]
Wang Z H, Xiong X Q, Qie L, Huang Y H. Electrochim. Acta, 2013, 106: 320.
[204]
Chu K N, Li Z Q, Xu S K, Yao G, Xu Y, Niu P, Zheng F C. J. Alloys Compd., 2021, 854: 157264.
[205]
Zhang Q Y, Liu F J, Gao P A, Zhao P, Guo H X, Wang L, Wan Z L. Mater. Lett., 2020, 268: 127366.
[206]
Zheng F C. DoctoralDissertation of University of Science and Technology of China, 2015.
(郑方才. 中国科学技术大学博士论文, 2015.).
[207]
Zheng F C, He M N, Yang Y, Chen Q W. Nanoscale, 2015, 7(8): 3410.
[208]
Wang Y, Gao Y J, Shao J, Holze R, Chen Z, Yun Y X, Qu Q T, Zheng H H. J. Mater. Chem. A, 2018, 6(8): 3659.
[209]
Kang W P, Zhang Y, Fan L L, Zhang L L, Dai F N, Wang R M, SunD F. ACS Appl. Mater. Interfaces, 2017, 9(12): 10602.
[210]
Han X, Chen W M, Han X G, Tan Y Z, SunD. J. Mater. Chem. A, 2016, 4(34): 13040.
[211]
Hou Y, Li J Y, Wen Z H, Cui S M, Yuan C, Chen J H. Nano Energy, 2015, 12: 1.
[212]
Sun Y, Huang F Z, Li S K, Shen Y H, Xie A J. Nano Res., 2017, 10(10): 3457.
[213]
Ding Y C, Hu L H, HeD C, Peng Y Q, Niu Y J, Li Z Q, Zhang X X, Chen S H. Chem. Eng. J., 2020, 380: 122489.
[214]
Pang Y C, Chen S, Xiao C H, Ma SD, Ding S J. J. Mater. Chem. A, 2019, 7(8): 4126.
[215]
Sui Z Y, Zhang P Y, Xu M Y, Liu Y W, Wei Z X, Han B H. ACS Appl. Mater. Interfaces, 2017, 9(49): 43171.
[216]
Park J, Ju J B, Choi W, Kim S O. J. Alloys Compd., 2019, 773: 960.
[217]
Yue H Y, Shi Z P, Wang Q X, Cao Z X, Dong H Y, Qiao Y, Yin Y H, Yang S T. ACS Appl. Mater. Interfaces, 2014, 6(19): 17067.
[218]
Li J K, WangD, Zhou J S, Hou L, Gao F M. ChemElectroChem, 2019, 6(3): 917.
[219]
Zhang X, Cao W J, Zou W W, ZhaoD Y, Zhao H B, Fang J H. Ferroelectrics, 2019, 547(1): 59.
[220]
Li J K, WangD, Zhou J S, Hou L, Gao F M. J. Alloys Compd., 2019, 793: 247.
[221]
Zhang J L, Chen Z H. Front. Mater., 2020, 7: 178.
[222]
Zou Y L, Li Z Y, Liu Y L, Duan J L, Long B. J. Alloys Compd., 2020, 820: 153085.
[223]
Mujahid M, Ullah Khan R, Mumtaz M, Mubasher, Soomro S A, Ullah S. Ceram. Int., 2019, 45(7): 8486.
[224]
Cai M C, Cai S R, Zheng M S, Dong Q F. J. Electrochem., 2014, 20(2): 101.
(蔡默超, 蔡森荣, 郑明森, 董全峰. 电化学, 2014, 20(2): 101.).
[225]
Yang H, Zhang K, Wang Y, Yan C, Lin S. J. Phys. Chem. Solids, 2017, 115: 317.
[226]
WangD, Zhou W W, Zhang R, Huang X X, Zeng J J, Mao Y F, Ding C Y, Zhang J, Liu J P, Wen G W. J. Mater. Chem. A, 2018, 6(7): 2974.
[227]
He Z S, Wang K, Zhu S S, Huang L A, Chen M M, Guo J F, Pei S E, Shao H B, Wang J M. ACS Appl. Mater. Interfaces, 2018, 10(13): 10974.
[228]
Zhang W, Wang B, Luo H, Jin F, Ruan T T, WangD L. J. Alloys Compd., 2019, 803: 664.
[229]
Wang Y Z, Kong M G, Liu Z W, Lin C C, Zeng Y. J. Mater. Chem. A, 2017, 5(46): 24269.
[230]
Sun W W, Chen S, Wang Y. Dalton Trans., 2019, 48(6): 2019.
[231]
Wu M H, Chen H Q, Lv L P, Wang Y. Chem. Eng. J., 2019, 373: 985.
[232]
Zou F, Hu X L, Li Z, Qie L, Hu C C, Zeng R, Jiang Y, Huang Y H. Adv. Mater., 2014, 26(38): 6622.
[233]
Zhao Y C, Li X, Liu JD, Wang C G, Zhao Y Y, Yue G H. ACS Appl. Mater. Interfaces, 2016, 8(10): 6472.
[234]
Yuan C Z, Cao H, Zhu S Q, Hua H, Hou L R. J. Mater. Chem. A, 2015, 3(40): 20389.
[235]
Niu J L, Zeng C H, Peng H J, Lin X M, Sathishkumar P, Cai Y P. Small, 2017, 13(47): 170215.
[236]
Li J F, Han L, Li Y Q, Li J L, Zhu G, Zhang X J, Lu T, Pan L K. Chem. Eng. J., 2020, 380: 122590.
[237]
Lu M J, Liao C, Jiang C, Du Y, Zhang Z, Wu S P. Electrochim. Acta, 2017, 250: 196.
[238]
Zhang L G, Li H, Xie H T, Chen T X, Yang C, Wang JD. J. Mater. Res., 2018, 33(10): 1496.
[239]
Mujtaba J, Sun H Y, Huang G Y, Zhao Y Y, Arandiyan H, Sun G X, Xu S M, Zhu J. RSC Adv., 2016, 6(38): 31775.
[240]
Zeng P Y, Li J W, Ye M, Zhuo K F, Fang Z. Chem. A Eur. J., 2017, 23(40): 9517.
[241]
Grugeon S, Laruelle S, Dupont L, Tarascon J M. Solid State Sci., 2003, 5(6): 895.
[242]
Wang F, Li K, Wang X, Li J Q, Pan J, Feng J, Liu K, Song S Y, Zhang H J. ACS Appl. Energy Mater., 2018, 1(11): 6242.
[243]
Chen L, Yang W J, Li X Y, Han L J, Wei MD. J. Mater. Chem. A, 2019, 7(17): 10331.
[244]
Paraknowitsch J P, Thomas A. Energy Environ. Sci., 2013, 6(10): 2839.
[245]
Wu R B, Wang D P, Rui X H, Liu B, Zhou K, Law A W K, Yan Q Y, Wei J, Chen Z. Adv. Mater., 2015, 27(19): 3038.
[246]
Wang Q F, Zou R Q, Xia W, Ma J, Qiu B, Mahmood A, Zhao R, Yang Y, XiaD G, Xu Q. Small, 2015, 11(21): 2511.
[247]
Song J B, Zhang C Y, Zhang J H, Zhou H, Chen L, Bian L L, Yuan A H. J. Nanopart. Res., 2019, 21(5): 90.
[248]
Wang J L, Wang J W, Han L F, Liao C, Cai W, Kan Y C, Hu Y. Nanoscale, 2019, 11(43): 20996.
[249]
Tian R, Zhou Y, Duan H N, Guo Y P, Li H, Chen K F, XueD F, Liu H Z. ACS Appl. Energy Mater., 2018, 1(2): 402.
[250]
Yang T, YangD X, Liu Y G, Liu J, Chen Y F, Bao L, Lu X X, Xiong Q Q, Qin H Y, Ji Z G, Ling CD, Zheng R K. Electrochimica Acta, 2018, 290: 193.
[251]
Zhao J G, Hu Z, SunD Z, Jia H, Liu X M. Nanomaterials, 2019, 9(4): 492.
[252]
Yin W H, Li W Y, Wang K, Chai W W, Ye W K, Rui Y C, Tang B. Electrochim. Acta, 2019, 318: 673.
[253]
Huang W, Li S, Cao X Y, Hou C Y, Zhang Z, Feng J K, Ci L J, Si P C, Chi Q J. ACS Sustain. Chem. Eng., 2017, 5(6): 5039.
[254]
Fu Y, Zhang Z A, Yang X, Gan Y Q, Chen W. RSC Adv., 2015, 5(106): 86941.
[255]
Ding H, Huang H C, Zhang X K, Xie L, Fan J Q, Jiang T, ShiD A, Ma N, Tsai F C. ChemElectroChem, 2019, 6(22): 5617.
[256]
Chen Z L, Wu R B, Wang H, Jiang Y K, Jin L, Guo Y H, Song Y, Fang F, SunD L. Chem. Eng. J., 2017, 326: 680.
[257]
Wu HD, Li G, Li Y, Geng Z X, Ren T Q, Cai T F, Yang Z X. Cryst. Res. Technol., 2019, 54(6): 1800281.
[258]
Ma Y, Ma Y J, Kim G T, Diemant T, Behm R J, GeigerD, Kaiser U, Varzi A, Passerini S. Adv. Energy Mater., 2019, 9(43): 1902077.
[259]
Xue H L, Yue S, Wang J, Zhao Y, Li Q, Yin M M, Wang S S, Feng C H, Wu Q, Li H S, ShiD X, Jiao Q Z. J. Electroanal. Chem., 2019, 840: 230.
[260]
Shao J, Gao T, Qu Q T, Shi Q, Zuo Z C, Zheng H H. J. Power Sources, 2016, 324: 1.
[261]
Hu C, Ma K, Hu Y J, Chen A P, Saha P, Jiang H, Li C Z. Green Energy Environ., 2021, 6(1): 75.
[262]
Yuan D X, Huang G, YinD M, Wang X X, Wang C L, Wang L M. ACS Appl. Mater. Interfaces, 2017, 9(21): 18178.
[263]
Aslam M K, Ahmad Shah S S, Li S, Chen C G. J. Mater. Chem. A, 2018, 6(29): 14083.
[264]
Li J B, YanD, Lu T, Yao Y F, Pan L K. Chem. Eng. J., 2017, 325: 14.
[265]
Jiang T C, Bu F X, Liu B L, Hao G L, Xu Y X. New J. Chem., 2017, 41(12): 5121.
[266]
Yang T, Liu Y G, YangD X, Deng B B, Huang Z H, Ling CD, Liu H, Wang G X, Guo Z P, Zheng R K. Energy Storage Mater., 2019, 17: 374.
[267]
Yang T, Liu J W, Yang D X, Mao Q N, Zhong J S, Yuan Y J, Li X Y, Zheng X, Ji Z G, Liu H, Wang G X, Zheng R K. ACS Appl. Energy Mater., 2020, 3(11): 11073.
[268]
Liu H, Li Z, Zhang L, Ruan H, Hu R. Nanoscale Res. Lett., 2019, 14: 237.
[269]
Tao S, Cui P X, Cong S, Chen S M, WuD J, Qian B, Song L, Marcelli A. Sci. China Mater., 2020, 63(9): 1672.
[270]
Wang X X, Na Z L, YinD M, Wang C L, Wu Y M, Huang G, Wang L M. ACS Nano, 2018, 12(12): 12238.
[271]
Xia G L, Su J W, Li M S, Jiang P, Yang Y, Chen Q W. J. Mater. Chem. A, 2017, 5(21): 10321.
[272]
Qi J, Shi Z P, Li X, Gao B X, Wang H, Yang L C, Tang Y, Zhu M. J. Alloys Compd., 2019, 786: 284.
[273]
Yan H R, Qiu F, Wang K L, ZhangD P, Chen J H, Niu F E. Plast. Sci. Technol., 2020, 48(11): 7.
(闫浩然, 邱帆, 汪楷丽, 张大鹏, 陈君华, 牛斐洱. 塑料科技, 2020, 48(11): 7.).
[274]
Zhou K Q, Lai L F, Zhen Y C, Hong Z S, Guo J H, Huang Z G. Chem. Eng. J., 2017, 316: 137.
[275]
Zhong M, He W W, Shuang W, Liu Y Y, Hu T L, Bu X H. Inorg. Chem., 2018, 57(8): 4620.
[276]
Chen S H, Zhou R H, Chen Y Q, Li P, Song Y H, Wang L. Int. J. Electrochem. Sci., 2016, 11(12): 10522.
[277]
He Q, Liu J S, Li Z H, Li Q, Xu L, Zhang B X, Meng J S, Wu Y Z, Mai L Q. Small, 2017, 13(37): 1701504.
[278]
Zou F, Chen Y M, Liu K W, Yu Z T, Liang W F, Bhaway S M, Gao M, Zhu Y. ACS Nano, 2016, 10(1): 377.
[279]
Joshi B, Samuel E, Il Kim Y, Kim M W, Jo H S, Swihart M T, Yoon W Y, Yoon S S. Chem. Eng. J., 2018, 351: 127.
PDF(20710 KB)

Accesses

Citation

Detail

Sections
Recommended

/