Hydrogen Spillover Effect in Electrocatalytic Hydrogen Evolution Reaction

Yan Liu, Yaqi Liu, Liwen Xing, Ke Wu, Jianjun Ji, Yongjun Ji

Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 244-255.

PDF(29372 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(29372 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 244-255. DOI: 10.7536/PC230601
16

Hydrogen Spillover Effect in Electrocatalytic Hydrogen Evolution Reaction

Author information +
History +

Abstract

Water electrolysis for hydrogen harvesting has become a research hotspot in both academia and industry due to its low carbon emissions, high energy efficiency, and high purity, which offer significant advantages over the majority of hydrogen production technologies. Thereinto, the electrocatalytic hydrogen reaction (HER) is at the core, which aways involves a multi-step hydrogen transfer process and multiple active sites working together. However, catalytic correlations between those active sites and potential hydrogen spillover effects involved are often overlooked. In this paper, we first review the hydrogen evolving properties and reaction mechanisms in electrocatalytic systems such as transition metal oxides, phosphides, and sulfides. By combining traditional theories of thermal catalysis, active sites involved in hydrogen spillover are then conceptually summarized into both the primary and secondary active sites, elucidating their catalytic relevance and functional differences. This paper will not only provide a design concept for the creation of efficient and inexpensive electrocatalysts for hydrogen evolution, but also serve as a useful reference for further studies of hydrogen transfer behaviors in other hydrogen-involved electrocatalytic reactions.

Contents

1 Introduction

2 Electrocatalyst for hydrogen spillover

2.1 Metal oxide

2.2 Metal phosphide

2.3 Metal sulfides

3 Conclusion and outlook

Key words

hydrogen spillover / hydrogen evolution reaction / primary active sites / secondary active sites

Cite this article

Download Citations
Yan Liu , Yaqi Liu , Liwen Xing , et al . Hydrogen Spillover Effect in Electrocatalytic Hydrogen Evolution Reaction[J]. Progress in Chemistry. 2024, 36(2): 244-255 https://doi.org/10.7536/PC230601

References

[1]
Xing L W, Liu Y, Liu Y Q, Wu K, Ji Y J. Chem. Cat. Chem., 2023, 15(4): 15.
[2]
Dinh C T, Jain A, de Arquer F P G, De Luna P, Li J, Wang N, Zheng X L, Cai J, Gregory B Z, Voznyy O, Zhang B, Liu M, Sinton D, Crumlin E J, Sargent E H. Nat. Energy, 2019, 4(2): 107.
[3]
Mosallanezhad A, Wei C, Ahmadian Koudakan P, Fang Y Y, Niu S W, Bian Z N, Liu B, Huang T, Pan H G, Wang G M. Appl. Catal. B Environ., 2022, 315: 121534.
[4]
Zheng Y, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2015, 54(1): 52.
[5]
Li J Y, Liu H X, Gou W Y, Zhang M K, Xia Z M, Zhang S, Chang C R, Ma Y Y, Qu Y Q. Energy Environ. Sci., 2019, 12(7): 2298.
[6]
Cao S F, Yang M, Elnabawy A O, Trimpalis A, Li S, Wang C Y, Göltl F, Chen Z, Liu J L, Shan J J, Li M W, Haas T, Chapman K W, Lee S, Allard L F, Mavrikakis M, Flytzani-Stephanopoulos M. Nat. Chem., 2019, 11(12): 1098.
[7]
Xie Y, Zhang L Y, Ying P J, Wang J C, Sun K, Li M. Progress in Chemistry, 2021, 33: 1571.
谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 化学进展, 2021, 33: 1571.)
[8]
Zhao D H, Lv D W, Zang Y R. Progress in Chemistry, 1997, (02): 15.
(赵德华, 吕德伟, 臧雅茹. 化学进展, 1997, (02): 15.)
[9]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355(6321): eaad4998.
[10]
Shen H F, Li H, Yang Z S, Li C L. Green Energy Environ., 2022, 7(6): 1161.
[11]
Xu H, Li J R, Chu X X. Chem. Rec., 2023, 23(3): e202200244.
[12]
Chen Y B, Zheng W Y, Chen M T, Guan X J. Transition Metal-Based Electrocatalysts: Applications in Green Hydrogen Production and Storage. Washington, DC: American Chemical Society, 2023, 1435: 147.
[13]
Khoobiar S. J. Phys. Chem., 1964, 68(2): 411.
[14]
Wu X W, Li W Y, Sheng S Z, Zhu L, Yuan L F, Liu J W, Jin S Y, Zhang Z. Electrochem. Commun., 2021, 129: 107085.
[15]
Messou D, Bernardin V, Meunier F, Ordoño M B, Urakawa A, Machado B F, Collière V, Philippe R, Serp P, Le Berre C. J. Catal., 2021, 398: 14.
[16]
Gao Y B, Hu E J, Yin G Y, Huang Z H. Fuel, 2021, 302: 121142.
[17]
Prins R, Palfi V K, Reiher M. J. Phys. Chem. C, 2012, 116(27): 14274.
[18]
Sihag A, Xie Z L, Thang H V, Kuo C L, Tseng F G, Dyer M S, Chen H Y T. J. Phys. Chem. C, 2019, 123(42): 25618.
[19]
Tan M W, Yang Y L, Yang Y, Chen J L, Zhang Z X, Fu G, Lin J D, Wan S L, Wang S, Wang Y. Nat. Commun., 2022, 13: 1457.
[20]
Zheng T T, Sang W, He Z H, Wei Q S, Chen B W, Li H L, Cao C, Huang R J, Yan X P, Pan B C, Zhou S M, Zeng J. Nano Lett., 2017, 17(12): 7968.
[21]
Li Y H, Liu P F, Pan L F, Wang H F, Yang Z Z, Zheng L R, Hu P, Zhao H J, Gu L, Yang H G. Nat. Commun., 2015, 6: 8064.
[22]
Ou H H, Wang D S, Li Y D. Nano Sel., 2021, 2(3): 492.
[23]
Park J, Lee S, Kim H E, Cho A, Kim S, Ye Y, Han J W, Lee H, Jang J H, Lee J. Angew. Chem. Int. Ed., 2019, 58(45): 16038.
[24]
Dubale A A, Zheng Y Y, Wang H L, Hübner R, Li Y, Yang J, Zhang J W, Sethi N K, He L Q, Zheng Z K, Liu W. Angew. Chem. Int. Ed., 2020, 59(33): 13891.
[25]
Zheng Y Y, Yang J, Lu X B, Wang H L, Dubale A A, Li Y, Jin Z, Lou D Y, Sethi N K, Ye Y H, Zhou J, Sun Y J, Zheng Z K, Liu W. Adv. Energy Mater., 2021, 11(5): 2002276.
[26]
Yang J, Hübner R, Zhang J W, Wan H, Zheng Y Y, Wang H L, Qi H Y, He L Q, Li Y, Dubale A A, Sun Y J, Liu Y T, Peng D L, Meng Y Z, Zheng Z K, Rossmeisl J, Liu W. Angew. Chem. Int. Ed., 2021, 60(17): 9590.
[27]
Fu X G, Choi J Y, Zamani P, Jiang G P, Hoque M A, Hassan F M, Chen Z W. ACS Appl. Mater. Interfaces, 2016, 8(10): 6488.
[28]
Li Y, Jiang K Y, Yang J, Zheng Y Y, Hübner R, Ou Z W, Dong X, He L Q, Wang H L, Li J, Sun Y J, Lu X B, Zhuang X D, Zheng Z K, Liu W. Small, 2021, 17(37): e2102159.
[29]
Liu L C, Corma A. Chem. Rev., 2023, 123(8): 4855.
[30]
Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven J A. Nature, 2017, 541(7635): 68.
[31]
Zhu L L, Lin H P, Li Y Y, Liao F, Lifshitz Y, Sheng M Q, Lee S T, Shao M W. Nat. Commun., 2016, 7: 12272.
[32]
Hao R, Fan Y S, Howard M D, Vaughan J C, Zhang B. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(23): 5878.
[33]
Liu L, Wang Y, Zhao Y Z, Wang Y, Zhang Z L, Wu T, Qin W J, Liu S J, Jia B R, Wu H Y, Zhang D Y, Qu X H, Chhowalla M, Qin M L. Adv. Funct. Mater., 2022, 32(20): 2112207.
[34]
Xue T, Geng G N, Han Y Q, Wang H Y, Li J, Li H T, Zhou Y B, Zhu T. Nat. Commun., 2021, 12: 3205.
[35]
Chen J D, Chen C H, Qin M K, Li B, Lin B B, Mao Q, Yang H B, Liu B, Wang Y. Nat. Commun., 2022, 13: 5382.
[36]
Wu R, Zhang J F, Shi Y M, Liu D L, Zhang B. J. Am. Chem. Soc., 2015, 137(22): 6983.
[37]
Cho J, Kim M, Seok H, Choi G H, Yoo S S, Sagaya Selvam N C, Yoo P J, Kim T. ACS Appl. Mater. Interfaces, 2022, 14(20): 24008.
[38]
Yang L, Zhu X B, Xiong S J, Wu X L, Shan Y, Chu P K. ACS Appl. Mater. Interfaces, 2016, 8(22): 13966.
[39]
Mao C L, Wang J X, Zou Y J, Qi G D, Yang Loh J Y, Zhang T H, Xia M K, Xu J, Deng F, Ghoussoub M, Kherani N P, Wang L, Shang H, Li M Q, Li J, Liu X, Ai Z H, Ozin G A, Zhao J C, Zhang L Z. J. Am. Chem. Soc., 2020, 142(41): 17403.
[40]
Yan Q Q, Wu D X, Chu S Q, Chen Z Q, Lin Y, Chen M X, Zhang J, Wu X J, Liang H W. Nat. Commun., 2019, 10: 4977.
[41]
Wei Z W, Wang H J, Zhang C, Xu K, Lu X L, Lu T B. Angew. Chem. Int. Ed., 2021, 60(30): 16622.
[42]
Liu T T, Gao W B, Wang Q Q, Dou M L, Zhang Z P, Wang F. Angew. Chem. Int. Ed., 2020, 59(46): 20423.
[43]
Cheng Y F, Lu S K, Liao F, Liu L B, Li Y Q, Shao M W. Adv. Funct. Mater., 2017, 27(23): 1700359.
[44]
Hall D S, Bock C, MacDougall B R. J. Electrochem. Soc., 2013, 160(3): F235.
[45]
Huang J Z, Han J C, Wu T, Feng K, Yao T, Wang X J, Liu S W, Zhong J, Zhang Z H, Zhang Y M, Song B. ACS Energy Lett., 2019, 4(12): 3002.
[46]
Wang J, Mao S J, Liu Z Y, Wei Z Z, Wang H Y, Chen Y Q, Wang Y. ACS Appl. Mater. Interfaces, 2017, 9(8): 7139.
[47]
Hu C Y, Ma Q Y, Hung S F, Chen Z N, Ou D H, Ren B, Chen H M, Fu G, Zheng N F. Chem, 2017, 3(1): 122.
[48]
Jin J, Wicks J, Min Q, Li J, Hu Y, Ma J, Wang Y, Jiang Z, Xu Y, Lu R, Si G, Papangelakis P, Shakouri M, Xiao Q, Ou P, Wang X, Chen Z, Zhang W, Yu K, Song J, Jiang X, Qiu P, Lou Y, Wu D, Mao Y, Ozden A, Wang C, Xia B Y, Hu X, Dravid V P, Yiu Y M, Sham T K, Wang Z, Sinton D, Mai L, Sargent E H, Pang Y. Nature, 2023, 617: 724.
[49]
Zeng Z H, Chang K C, Kubal J, Markovic N M, Greeley J. Nat. Energy, 2017, 2(6): 17070.
[50]
Xiao M L, Gao L Q, Wang Y, Wang X, Zhu J B, Jin Z, Liu C P, Chen H Q, Li G R, Ge J J, He Q G, Wu Z J, Chen Z W, Xing W. J. Am. Chem. Soc., 2019, 141(50): 19800.
[51]
Cao L L, Luo Q Q, Liu W, Lin Y, Liu X K, Cao Y J, Zhang W, Wu Y E, Yang J L, Yao T, Wei S Q. Nat. Catal., 2018, 2(2): 134.
[52]
Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Nat. Commun., 2019, 10: 4849.
[53]
Liu Y, Liu X H, Wang X S, Ning H, Yang T, Yu J M, Kumar A, Luo Y G, Wang H D, Wang L L, Lee J S, Jadhav A R, Hu H, Wu M B, Kim M G, Lee H. ACS Nano, 2021, 15(9): 15017.
[54]
Lima F H B, Zhang J, Shao M H, Sasaki K, Vukmirovic M B, Ticianelli E A, Adzic R R. J. Phys. Chem. C, 2007, 111(1): 404.
[55]
Yan H, Jiang Z, Deng B, Wang Y, Jiang Z J. Adv. Energy Mater., 2023, 2300152.
[56]
Wang Q, Cheng Y, Tao H B, Liu Y, Ma X, Li D S, Yang H B, Liu B. Angew. Chem. Int. Ed., 2023, 62: e202216645.
[57]
Liu K, Huang X, Wang H, Li F, Tang Y, Li J, Shao M. ACS Appl. Mater. Interfaces, 2016, 8: 34422.
[58]
Lee J M, Mok E K, Lee S, Lee N S, Debbichi L, Kim H, Hwang S J. Angew. Chem. Int. Ed., 2016, 55(30): 8546.
[59]
Yang J, Xiong S, Song J, Wu H, Zeng Y, Lu L, Shen K, Hao T, Ma Z, Liu F, Duan C, Fahlman M, Bao Q. Adv. Energy Mater., 2020, 10: 2000687.
[60]
Liang R X, Shu C Z, Hu A J, Xu C X, Zheng R X, Li M L, Guo Y W, He M, Yan Y, Long J P. J. Mater. Chem. A, 2020, 8(22): 11337.
[61]
Lei Z W, Wang T Y, Zhao B T, Cai W B, Liu Y, Jiao S H, Li Q, Cao R G, Liu M L. Adv. Energy Mater., 2020, 10(23): 2000478.
[62]
Dai J, Zhu Y L, Tahini H A, Lin Q, Chen Y, Guan D Q, Zhou C, Hu Z W, Lin H J, Chan T S, Chen C T, Smith S C, Wang H T, Zhou W, Shao Z P. Nat. Commun., 2020, 11: 5657.
[63]
Dai J, Zhu Y L, Chen Y, Wen X, Long M C, Wu X H, Hu Z W, Guan D Q, Wang X X, Zhou C, Lin Q, Sun Y F, Weng S C, Wang H T, Zhou W, Shao Z P. Nat. Commun., 2022, 13: 1189.
[64]
Yu W L, Gao Y X, Chen Z, Zhao Y, Wu Z X, Wang L. Chin. J. Catal., 2021, 42(11): 1876.
[65]
Li J Y, Hu J, Zhang M K, Gou W Y, Zhang S, Chen Z, Qu Y Q, Ma Y Y. Nat. Commun., 2021, 12: 3502.
[66]
Li J Y, Tan Y, Zhang M K, Gou W Y, Zhang S, Ma Y Y, Hu J, Qu Y Q. ACS Energy Lett., 2022, 7(4): 1330.
[67]
Gao W, Yan M, Cheung H Y, Xia Z M, Zhou X M, Qin Y B, Wong C Y, Ho J C, Chang C R, Qu Y Q. Nano Energy, 2017, 38: 290.
[68]
Niu S W, Cai J Y, Wang G M. Nano Res., 2021, 14(6): 1985.
[69]
Lasia A. Electrochemical Impedance Spectroscopy and its Applications. In Modern Aspects of Electrochemistry. Eds.: Conway B. E., Bockris J. O. M., White R. E. Springer US: Boston, MA, 2002, 143.
[70]
Liu Y, Chen Y, Tian Y, Sakthivel T, Liu H, Guo S, Zeng H, Dai Z. Adv. Mater., 2022, 2203615.
[71]
Nishihara H, Ittisanronnachai S, Itoi H, Li L X, Suzuki K, Nagashima U, Ogawa H, Kyotani T, Ito M. J. Phys. Chem. C, 2014, 118(18): 9551.
[72]
Fu H Q, Zhou M, Liu P F, Liu P R, Yin H J, Sun K Z, Yang H G, Al-Mamun M, Hu P J, Wang H F, Zhao H J. J. Am. Chem. Soc., 2022, 144(13): 6028.

Funding

Beijing Technology and Business University 2023 Graduate Student Research Ability Enhancement Program(19008023027)
Research Foundation for Youth Scholars of Beijing Technology and Business University(QNJJ2022-22)
Research Foundation for Youth Scholars of Beijing Technology and Business University(QNJJ2022-23)
R&D Program of Beijing Municipal Education Commission(KM202310011005)
National Natural Science Foundation of China(21978299)
Research Foundation for Advanced Talents of Beijing Technology and Business University(19008020159)
PDF(29372 KB)

Accesses

Citation

Detail

Sections
Recommended

/