Growth of Large-Size Organic Molecular Crystals for Optoelectronic Applications

Jingyu Cui, Hui Jiang, Rongjin Li, Weigang Zhu

Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 204-223.

PDF(10334 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10334 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 204-223. DOI: 10.7536/PC230616
24

Growth of Large-Size Organic Molecular Crystals for Optoelectronic Applications

Author information +
History +

Abstract

Organic molecular crystals, bounded together by non-covalent interactions, are three-dimensional long-range ordering and thermodynamic stable, and have low defect density and show rich prospects for applications in organic field effect transistors (OFETs), X-ray imaging, nonlinear optics, optical waveguides, flexible wearable devices, and lasers. However, previous research is mainly based on organic bulk crystals or small-size crystals, and there is less research on large-size organic molecular crystals while practical application scenarios often require large-size organic molecular crystals, such as transistor arrays and circuits requiring inch-level crystal films, X-ray imaging and nonlinear optical frequency conversion require centimeter-level crystals. However, it is difficult to obtain high-quality large-size organic molecular crystals, and there is no summary and review on the growth and optoelectronic properties of large-size organic molecular crystals at home and abroad. In this review, we first introduce the growth mechanism and growth method of molecular crystals, followed by the materials for growing large-size organic molecular crystals. Then we summarize the applications of large-size organic molecular crystals in optoelectronic aspects, such as long-persistent luminescence, nonlinear optics, X-ray imaging, fast neutron detection, field-effect transistors, and photodetectors. Finally, the challenges in this field are discussed and an outlook on future development is provided.

Contents

1 Introduction

2 Growth mechanism and method

2.1 Theory of crystal growth

2.2 Growth methods

3 Classical organic molecular materials

3.1 Materials for Bulk single crystals

3.2 Materials for single crystal films

4 Optoelectronic applications

4.1 Long-Persistent Luminescence

4.2 Non-linear optical response

4.3 X-Ray Imaging

4.4 Fast neutron detection

4.5 Ferroelectricity

4.6 Field-Effect Transistors and Circuits

4.7 Photodetectors

5 Conclusion and outlook

Key words

molecular crystal / large size / optoelectronics / field effect transistor

Cite this article

Download Citations
Jingyu Cui , Hui Jiang , Rongjin Li , et al. Growth of Large-Size Organic Molecular Crystals for Optoelectronic Applications[J]. Progress in Chemistry. 2024, 36(2): 204-223 https://doi.org/10.7536/PC230616

References

[1]
Cheng Y, Zhang X, Qin Y X, Dong P, Yao W, Matz J, Ajayan P M, Shen J F, Ye M X. Nat. Commun., 2021, 12: 4092.
[2]
Jiang T, Wang Y R, Zheng Y S, Wang L, He X, Li L Q, Deng Y F, Dong H L, Tian H K, Geng Y H, Xie L H, Lei Y, Ling H F, Ji D Y, Hu W P. Nat. Commun., 2023, 14: 2281.
[3]
Xu X Z, Deng W, Zhang X J, Huang L M, Wang W, Jia R F, Wu D, Zhang X H, Jie J S, Lee S T. ACS Nano, 2019, 13(5): 5910.
[4]
Farah S, Doloff J C, Müller P, Sadraei A, Han H J, Olafson K, Vyas K, Tam H H, Hollister-Lock J, Kowalski P S, Griffin M, Meng A, McAvoy M, Graham A C, McGarrigle J, Oberholzer J, Weir G C, Greiner D L, Langer R, Anderson D G. Nat. Mater., 2019, 18(8): 892.
[5]
Im H, Yoon J, Choi J, Kim J, Baek S, Park D H, Park W, Kim S. Adv. Mater., 2021, 33 (44): e2102542.
[6]
Marinkas P L. Nature, 1966, 211(5055): 1288.
[7]
Lv B L, Liu Z Y, Tian H, Xu Y, Wu D, Sun Y H. Adv. Funct. Mater., 2010, 20(22): 3987.
[8]
Li Z H, Zeng J H, Li Y D. Small, 2007, 3(3): 438.
[9]
Oh C G, Baek Y, Ihm S K. Adv. Mater., 2005, 17(3): 270.
[10]
Watanabe T, Cho W S, Suchanek W L, Endo M, Ikuma Y, Yoshimura M. Solid State Sci., 2001, 3(1/2): 183.
[11]
Bouaita R, Alombert-Goget G, Ghezal E A, Nehari A, Benamara O, Benchiheub M, Cagnoli G, Yamamoto K, Xu X, Motto-Ros V, Li H, Dujardin C, Lebbou K. CrystEngComm, 2019, 21(28): 4200.
[12]
Feigelson R S. J. Cryst. Growth, 2022, 594: 126800.
[13]
Zhu W G, Zhu L Y, Zou Y, Wu Y S, Zhen Y G, Dong H L, Fu H B, Wei Z X, Shi Q, Hu W P. Adv. Mater., 2016, 28(28): 5954.
[14]
Cui S Y. Doctoral Dissertation of Shandong University, 2021.
(崔双月. 山东大学博士论文, 2021.)
[15]
Dou Z F, Masteral Dissertation of University of Electronic Science and Technology of China, 2022.
(窦子凡. 电子科技大学硕士论文, 2022.)
[16]
De Yoreo J. A Perspective on Multistep Pathways of Nucleation. In Crystallization via Nonclassical Pathways. Nucleation, Assembly, Observation & Application, American Chemical Society, 2020, 1.
[17]
Tsarfati Y, Biran I, Wiedenbeck E, Houben L, Cölfen H, Rybtchinski B. ACS Cent. Sci., 2021, 7(5): 900.
[18]
Ma T Q, Wei L, Liang L, Yin S, Xu L, Niu J, Xue H D, Wang X G, Sun J L, Zhang Y B, Wang W. Nat. Commun., 2020, 11: 6128.
[19]
Xue D F, Su L B, Xu J. J. Inorg. Mater., 2023, 38(3): 225.
[20]
Wang W H. Prog. Phys., 2013, 33(5): 177.
汪卫华. 物理学进展, 2013, 33(5): 177.)
[21]
Zhao J P. Design and preparation technology of new functional materials. Beijing: Chemical Industry Press, 2003.
(赵九蓬. 新型功能材料设计与制备工艺. 北京: 化学工业出版社, 2003.)
[22]
Jie W Q. Principle and Technology of Crystal Growth. 2nd ed. Beijing: Science Press, 2019.
(介万奇. 晶体生长原理与技术. 2版. 北京: 科学出版社, 2019.)
[23]
Donnay J D H, Harker D. Am Mineral, 1937, 22 (5): 446.
[24]
Hartman P G. P W, On the relations between structure and morphology of crystal II. 1955.
[25]
Parker R. Crystal Growth: An Introduction. P. Hartman North-Holland, Amsterdam, 1973, 531.
[26]
Hartman P, Bennema P. J. Cryst. Growth, 1980, 49(1): 145.
[27]
Tocher F E. Mineral. Mag., 1978, 42(321): 165.
[28]
Zheng Y Q, Shi E W, Li W J, Wang B G, Hu X F. Journal of Inorganic Materials, 1999, 03: 321.
(郑燕青, 施尔畏, 李汶军, 王步国, 胡行方. 无机材料学报, 1999, 03: 321.)
[29]
Shi E W, Zhong W Z, Hua S K, Yuan R L, Wang B G, Xia C T, Li W J. Chinese Science, 1998, 01: 37.
施尔畏, 仲维卓, 华素坤, 元如林, 王步国, 夏长泰, 李汶军. 中国科学, 1998, 01: 37.)
[30]
Yao J R, Tian X Z, Li B, Wang Z F, Zhang X L, Jie J S, Yang F X, Li R J, Hu W P. Adv. Electron. Mater., 2023, 9(2): 2201027.
[31]
Scriven L E, Sternling C V. Nature, 1960, 187(4733): 186.
[32]
Fan F Q, Zhang Z H, Guo J, Zhang L Y, Zhang X M, Wang T Q, Fu Y. CrystEngComm, 2023, 25(19): 2877.
[33]
Vijayan N, Balamurugan N, Ramesh Babu R, Gopalakrishnan R, Ramasamy P, Harrison W T A. J. Cryst. Growth, 2004, 267(1/2): 218.
[34]
Cui S Y, Zhu T W, Zhang L L, Ye X, Han Q X, Ge C, Guo Q, Zheng X X, Lin Q L, Li C C, Jiang J K, Yuan W Z, Liu Y, Tao X T. Adv. Opt. Mater., 2022, 10(9): 2102355.
[35]
Senthil K, Kalainathan S, Ruban Kumar A. J. Therm. Anal. Calorim., 2014, 118(1): 323.
[36]
Halliwell C A, Dann S E, Ferrando-Soria J, Plasser F, Yendall K, Ramos-Fernandez E V, Vladisavljević G T, Elsegood M R J, Fernandez A. Angew. Chem. Int. Ed., 2022, 61(47): 2208677.
[37]
Mohammed A V, Arulappan J A P, Ganesan S T. Optik, 2015, 126(23): 4322.
[38]
Wang Q Q, Yang F X, Zhang Y, Chen M X, Zhang X T, Lei S B, Li R J, Hu W P. J. Am. Chem. Soc., 2018, 140(16): 5339.
[39]
Yao J, Zhang Y, Tian X, Zhang X, Zhao H, Zhang X, Jie J, Wang X, Li R, Hu W. Angew. Chem. Int. Ed., 2019, 58 (45): 16082.
[40]
Sele C W, Charlotte Kjellander B K, Niesen B, Thornton M J, van der Putten J B P H, Myny K, Wondergem H J, Moser A, Resel R, van Breemen A J J M, van Aerle N, Heremans P, Anthony J E, Gelinck G H. Adv. Mater., 2009, 21(48): 4926.
[41]
Marszalek T, Nosal A, Pfattner R, Jung J, Kotarba S, Mas-Torrent M, Krause B, Veciana J, Gazicki-Lipman M, Crickert C, Schmidt G, Rovira C, Ulanski J. Org. Electron., 2012, 13(1): 121.
[42]
Qi Z, Zhang F J, Di C A, Wang J Z, Zhu D B. J. Mater. Chem. C, 2013, 1(18): 3072.
[43]
Khim D, Han H, Baeg K J, Kim J, Kwak S W, Kim D Y, Noh Y Y. Adv. Mater., 2013, 25(31): 4302.
[44]
Hong S, Yi M J, Kang H, Kong J, Lee W, Kim J R, Lee K. Sol. Energy Mater. Sol. Cells, 2014, 126: 107.
[45]
Lee W Y, Oh J H, Suraru S L, Chen W C, Würthner F, Bao Z N. Adv. Funct. Mater., 2011, 21(21): 4173.
[46]
Kang B, Min H, Seo U, Lee J, Park N, Cho K, Lee H S. Adv. Mater., 2013, 25(30): 4117.
[47]
Park Y, Park J, Cho S, Sung M M. Appl. Surf. Sci., 2019, 494: 1023.
[48]
Jiang H, Kloc C. MRS Bull., 2013, 38(1): 28.
[49]
Karl N. J. Cryst. Growth, 1990, 99(1/4): 1009.
[50]
Laudise R A, Kloc C, Simpkins P G, Siegrist T. J. Cryst. Growth, 1998, 187(3/4): 449.
[51]
Wang H, Xie Z Q, Yang B, Shen F Z, Li Y P, Ma Y G. CrystEngComm, 2008, 10(9): 1252.
[52]
Cui S Y, Liu Y, Li G L, Han Q X, Ge C, Zhang L L, Guo Q, Ye X, Tao X T. Cryst. Growth Des., 2020, 20(2): 783.
[53]
Deng W, Lei H, Zhang X, Sheng F, Shi J, Zhang X, Liu X, Grigorian S, Zhang X, Jie J S. Adv. Mater., 2022, 34 (13): e2109818.
[54]
Jiang H, Hu P, Ye J, Li Y, Li H, Zhang X, Li R, Dong H, Hu W, Kloc C. Adv. Mater., 2017, 29 (10): 1605053.
[55]
Verma S, Ramachandra Rao K, Kar S, Bartwal K S. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2016, 153: 16.
[56]
Xu K, Cao L F, You F, Zhong D G, Wang T H, Yu Z, Hu C, Tang J, Teng B. J. Cryst. Growth, 2020, 547: 125757.
[57]
Kim G, Kim D, Choi Y, Ghorai A, Park G, Jeong U. Adv. Mater., 2023, 35 (4): e2203373.
[58]
Peng B Y, He Z F, Chen M, Chan P K L. Adv. Funct. Mater., 2022, 32(39): 2202632.
[59]
Saha S, Desiraju G R. J. Am. Chem. Soc., 2018, 140(20): 6361.
[60]
Wang Y, Zhu W G, Du W N, Liu X F, Zhang X T, Dong H L, Hu W P. Angew. Chem. Int. Ed., 2018, 57(15): 3963.
[61]
Yang F X, Sun L J, Duan Q X, Dong H L, Jing Z K, Yang Y C, Li R J, Zhang X T, Hu W P, Chua L. SmartMat, 2021, 2(1): 99.
[62]
Zhu W G, Zhu L Y, Sun L J, Zhen Y G, Dong H L, Wei Z X, Hu W P. Angew. Chem. Int. Ed., 2016, 55(45): 14023.
[63]
Zhu W G, Zheng R H, Zhen Y G, Yu Z Y, Dong H L, Fu H B, Shi Q, Hu W P. J. Am. Chem. Soc., 2015, 137(34): 11038.
[64]
Wang Y, Wu H, Zhu W G, Zhang X T, Liu Z Y, Wu Y S, Feng C F, Dang Y F, Dong H L, Fu H B, Hu W P. Angew. Chem. Int. Ed., 2021, 60(12): 6344.
[65]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J. Nat. Chem., 2011, 3(3): 205.
[66]
Wang H, Hu R X, Pang X, Gao H Y, Jin W J. CrystEngComm, 2014, 16(34): 7942.
[67]
Cunningham P D, Hayden L M. Opt. Express, 2010, 18(23): 23620.
[68]
Wang W L, Wang M, Huang W D. Opt. Mater., 2004, 27(3): 609.
[69]
Lee S H, Lee S J, Jazbinsek M, Kang B J, Rotermund F, Kwon O P. CrystEngComm, 2016, 18(38): 7311.
[70]
Wang J X, Bakr O M, Mohammed O F. Matter, 2022, 5(8): 2547.
[71]
Chen M, Sun L, Ou X, Yang H, Liu X, Dong H, Hu W, Duan X. Adv. Mater., 2021, 33 (43): e2104749.
[72]
Liu Y C, Xu Z, Yang Z, Zhang Y X, Cui J, He Y H, Ye H C, Zhao K, Sun H M, Lu R, Liu M, Kanatzidis M G, Liu S Z. Matter, 2020, 3(1): 180.
[73]
Zhao D, Cai P K, Cheng W, Jia W B, Zhang B B, Zhu M H, Liu L Y, Ouyang X, Sellin P, Jie W Q, Xu Y D. Adv. Funct. Mater., 2022, 32(7): 2108857.
[74]
Sun Q S, Hao Z R, Li J, Liu Z Y, Wang H W, Zhang X T, Li L Q, Dong H L, Hu W P. Matter, 2023, 6(1): 274.
[75]
Wang Z X, Liao W Q. Science, 2022, 375(6587): 1353.
[76]
Tressler J F, Alkoy S, Newnham R E. J. Electroceram., 1998, 2(4): 257.
[77]
Lv H P, Liao W Q, You Y M, Xiong R G. J. Am. Chem. Soc., 2022, 144(48): 22325.
[78]
Tayi A S, Shveyd A K, Sue A C H, Szarko J M, Rolczynski B S, Cao D, Kennedy T J, Sarjeant A A, Stern C L, Paxton W F, Wu W, Dey S K, Fahrenbach A C, Guest J R, Mohseni H, Chen L X, Wang K L, Stoddart J F, Stupp S I. Nature, 2012, 488(7412): 485.
[79]
Briseno A L, Mannsfeld S C B, Ling M M, Liu S H, Tseng R J, Reese C, Roberts M E, Yang Y, Wudl F, Bao Z N. Nature, 2006, 444(7121): 913.
[80]
Du C, Li L Q, Wang W C, Zhang J D, Yan D H, Hu W P, Fuchs H, Chi L F. AIP Adv., 2012, 2(2): 022138.
[81]
Xu C H, He P, Liu J, Cui A J, Dong H L, Zhen Y G, Chen W, Hu W P. Angew. Chem. Int. Ed., 2016, 55(33): 9443.
[82]
Yamamura A, Watanabe S, Uno M, Mitani M, Mitsui C, Tsurumi J, Isahaya N, Kanaoka Y, Okamoto T, Takeya J. Sci. Adv., 2018, 4(2): eaao5758.
[83]
Ji C, Wang P, Wu Z, Sun Z, Li L, Zhang J, Hu W, Hong M, Luo J. Adv. Funct. Mater., 2018, 28(14): 1705467.
[84]
Chen Y Z, Wang S W, Su T Y, Lee S H, Chen C W, Yang C H, Wang K Y, Kuo H C, Chueh Y L. Small, 2018, 14(22): 1704052.
[85]
Chen Y Z, You Y T, Chen P J, Li D P, Su T Y, Lee L, Shih Y C, Chen C W, Chang C C, Wang Y C, Hong C Y, Wei T C, Ho J C, Wei K H, Shen C H, Chueh Y L. ACS Appl. Mater. Interfaces, 2018, 10(41): 35477.
[86]
Ouyang W, Teng F, Fang X. Adv. Funct. Mater., 2018, 28 (16): 1707178.
[87]
Yang W, Chen J, Zhang Y, Zhang Y, He J H, Fang X. Adv. Funct. Mater., 2019, 29 (18): 1808182.
[88]
Oxborrow M, Breeze J D, Alford N M. Nature, 2012, 488(7411): 353.

Funding

National Natural Science Foundation of China(U21A6002)
PDF(10334 KB)

Accesses

Citation

Detail

Sections
Recommended

/