Study on the Structure and Bonding Nature of Uranium Compounds Coordinated with Saturated Carbon

Ruiying Liu, Qunyan Wu, Chengpeng Li, Yi Ren, Zhifang Chai, Weiqun Shi

Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 167-176.

PDF(1552 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1552 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 167-176. DOI: 10.7536/PC230621
14

Study on the Structure and Bonding Nature of Uranium Compounds Coordinated with Saturated Carbon

Author information +
History +

Abstract

The synthesis of uranium compounds has become one of the hot fields in organometallic chemistry. Compared with transition metal compounds, the synthesis and isolation of uranium compounds is extremely challenging, especially for the ones bearing uranium-carbon bonds. Carbene has lone pair electrons that easily combine with the empty orbitals of uranium. However, the carbon of benzyl or alkyl groups has no lone pair of electrons, which makes it difficult to combine with uranium. With the understanding of the electronic structure and bonding properties of uranium, some progress has been made in the study of uranium compounds coordinated with saturated carbon. This review systematically summarizes the structures and bonding properties of different valence states uranium compounds.

Contents

1 Introduction

2 Trivalent uranium carbon compounds

2.1 Trimethylsilyl based compounds

2.2 Cyclopentadienyl based compounds

2.3 Tripyrazole borate based compounds

3 Tetravalent uranium carbon compounds

3.1 Alkyl based compounds

3.2 Amino and amide based compounds

3.3 Ferrocene based compounds

3.4 Alkoxyl based compounds

4 Pentavalent uranium carbon compounds

5 Hexavalent uranium carbon compounds

6 Theoretical study of U-C bonding nature

7 Conclusion

Key words

uranium compounds / U-C bond / benzyl compounds / alkyl compounds / bonding nature

Cite this article

Download Citations
Ruiying Liu , Qunyan Wu , Chengpeng Li , et al . Study on the Structure and Bonding Nature of Uranium Compounds Coordinated with Saturated Carbon[J]. Progress in Chemistry. 2024, 36(2): 167-176 https://doi.org/10.7536/PC230621

References

[1]
Gilman H, Jones R G, Bindschadler E, Blume D, Karmas G, Martin G A Jr, Nobis J F, Thirtle J R, Yale H L, Yoeman F A. J. Am. Chem. Soc., 1956, 78(12): 2790.
[2]
Seaman L A, Walensky J R, Wu G, Hayton T W. Inorg. Chem., 2013, 52(7): 3556.
[3]
Zucchini U, Giannini U, Albizzati E, D’Angelo R. J. Chem. Soc. D, 1969(20): 1174.
[4]
Ballard D G H, van Lienden P W. Makromol. Chem., 1972, 154(1): 177.
[5]
Köhler E, Brüser W, Thiele K H. J. Organomet. Chem., 1974, 76(2): 235.
[6]
Shannon R D. Acta Crystallogr. Sect. A, 1976, 32(5): 751.
[7]
Drożdżyński J. Coord. Chem. Rev., 2005, 249(21/22): 2351.
[8]
Berthet J C, Ephritikhine M. Coord. Chem. Rev., 1998, 178/180: 83.
[9]
Wang K X, Chen J S. Acc. Chem. Res., 2011, 44(7): 531.
[10]
Gardner B M, Liddle S T. Eur. J. Inorg. Chem., 2013, 2013(22/23): 3753.
[11]
Ephritikhine M. Comptes Rendus Chim., 2013, 16(4): 391.
[12]
Marks T J, Seyam A M. J. Am. Chem. Soc., 1972, 94(18): 6545.
[13]
Clark D L, Sattelberger A P, Bott S G, Vrtis R N. Inorg. Chem., 1989, 28(10): 1771.
[14]
Avens L R, Bott S G, Clark D L, Sattelberger A P, Watkin J G, Zwick B D. Inorg. Chem., 1994, 33(10): 2248.
[15]
Marks T J, Seyam A M. J. Organomet. Chem., 1974, 67(1): 61.
[16]
Manriquez J M, Fagan P J, Marks T J. J. Am. Chem. Soc., 1978, 100(12): 3939.
[17]
Van der Sluys W G, Burns C J, Sattelberger A P. Organometallics, 1989, 8(3): 855.
[18]
Ortiz J V, Hay P J, Martin R L. J. Am. Chem. Soc., 1992, 114(7): 2736.
[19]
Andersen R A. Inorg. Chem., 1979, 18(6): 1507.
[20]
Stewart J L, Andersen R A. Polyhedron, 1998, 17(5/6): 953.
[21]
Arnaudet L, Charpin P, Folcher G, Lance M, Nierlich M, Vigner D. Organometallics, 1986, 5(2): 270.
[22]
Manriquez J M, Fagan P J, Marks T J, Vollmer S H, Day C S, Day V W. J. Am. Chem. Soc., 1979, 101(17): 5075.
[23]
Evans W J, Kozimor S A, Ziller J W, Kaltsoyannis N. J. Am. Chem. Soc., 2004, 126(44): 14533.
[24]
Evans W J, Traina C A, Ziller J W. J. Am. Chem. Soc., 2009, 131(47): 17473.
[25]
Zhang L, Fang B, Hou G H, Ai L, Ding W J, Walter M D, Zi G F. Dalton Trans., 2016, 45(41): 16441.
[26]
Zhang L, Hou G H, Zi G F, Ding W J, Walter M D. J. Am. Chem. Soc., 2016, 138(15): 5130.
[27]
Zhang L, Fang B, Hou G H, Zi G F, Ding W J, Walter M D. Organometallics, 2017, 36(4): 898.
[28]
Wang D Q, Ding W J, Hou G H, Zi G F, Walter M D. Chem., 2021, 27(22): 6767.
[29]
Bagnall K W, Edwards J. J. Organomet. Chem., 1974, 80(1): C14.
[30]
Matson E M, Forrest W P, Fanwick P E, Bart S C. J. Am. Chem. Soc., 2011, 133(13): 4948.
[31]
Matson E M, Fanwick P E, Bart S C. Organometallics, 2011, 30(21): 5753.
[32]
Matson E M, Crestani M G, Fanwick P E, Bart S C. Dalton Trans., 2012, 41(26): 7952.
[33]
Matson E M, Forrest W P, Fanwick P E, Bart S C. Organometallics, 2013, 32(5): 1484.
[34]
Tatebe C J, Johnson S A, Zeller M, Bart S C. J. Organomet. Chem., 2018, 857: 152.
[35]
Marks T J, Seyam A M, Kolb J R. J. Am. Chem. Soc., 1973, 95(17): 5529.
[36]
Halstead G W, Baker E C, Raymond K N. J. Am. Chem. Soc., 1975, 97(11): 3049.
[37]
Evans W J, Kozimor S A, Ziller J W. Organometallics, 2005, 24(14): 3407.
[38]
Evans W J, Kozimor S A, Hillman W R, Ziller J W. Organometallics, 2005, 24: 4676.
[39]
Jantunen K C, Burns C J, Castro-Rodriguez I, Da Re R E, Golden J T, Morris D E, Scott B L, Taw F L, Kiplinger J L. Organometallics, 2004, 23(20): 4682.
[40]
Schelter E, Veauthier J, Graves C, John K, Scott B, Thompson J, Pool-Davis-Tournear J, Morris D, Kiplinger J. Chem., 2008, 14(26): 7782.
[41]
Mintz E A, Moloy K G, Marks T J, Day V W. J. Am. Chem. Soc., 1982, 104(17): 4692.
[42]
Kiplinger J L, Morris D E, Scott B L, Burns C J. Organometallics, 2002, 21(26): 5978.
[43]
Kraft S J, Fanwick P E, Bart S C. J. Am. Chem. Soc., 2012, 134(14): 6160.
[44]
Johnson S A, Kiernicki J J, Fanwick P E, Bart S C. Organometallics, 2015, 34(12): 2889.
[45]
Johnson S A, Higgins R F, Abu-Omar M M, Shores M P, Bart S C. Organometallics, 2017, 36: 3491.
[46]
Wedler M, Knösel F, Edelmann F T, Behrens U. Chem. Ber., 1992, 125(6): 1313.
[47]
Diaconescu P L, Odom A L, Agapie T, Cummins C C. Organometallics, 2001, 20(24): 4993.
[48]
Sun X, Gong X X, Xie Z Y, Zhu C Q. Chin. J. Chem., 2022, 40(17): 2047.
[49]
Jantunen K C, Haftbaradaran F, Katz M J, Batchelor R J, Schatte G, Leznoff D B. Dalton Trans., 2005, (18): 3083.
[50]
Monreal M J, Diaconescu P L. Organometallics, 2008, 27(8): 1702.
[51]
Duhović S, Oria J V, Odoh S O, Schreckenbach G, Batista E R, Diaconescu P L. Organometallics, 2013, 32(20): 6012.
[52]
Morris D E, Da Re R E, Jantunen K C, Castro-Rodriguez I, Kiplinger J L. Organometallics, 2004, 23(22): 5142.
[53]
Stewart J L, Andersen R A. J. Chem. Soc., hem. Commun., 1987, (24): 1846.
[54]
Andreychuk N R, Ilango S, Vidjayacoumar B, Emslie D J H, Jenkins H A. Organometallics, 2013, 32(5): 1466.
[55]
Sigurdson E R, Wilkinson G. J. Chem. Soc., alton Trans., 1977, (8): 812.
[56]
Fortier S, Walensky J R, Wu G, Hayton T W. J. Am. Chem. Soc., 2011, 133: 11732.
[57]
Johnson S A, Bart S C. Dalton Trans., 2015, 44(17): 7710.
[58]
Seaman L A, Hrobárik P, Schettini M F, Fortier S, Kaupp M, Hayton T W. Angew. Chem. Int. Ed., 2013, 52(11): 3259.
[59]
Lewis A J, Carroll P J, Schelter E J. J. Am. Chem. Soc., 2013, 135(35): 13185.
[60]
Seth M, Dolg M, Fulde P, Schwerdtfeger P. J. Am. Chem. Soc., 1995, 117(24): 6597.
[61]
Chi X W, Wu Q Y, Yu J P, Zhang Q, Chai Z F, Shi W Q. Prog. Chem., 2019, 31: 1341.
[62]
Wang D Q, van Gunsteren W F. Prog. Chem., 2011, 23: 1566.
[63]
Roos B O, Widmark P O, Gagliardi L. Faraday Disc., 2003, 124: 57.
[64]
Wang X F, Andrews L, Malmqvist P Å, Roos B O, Gonçalves A P, Pereira C C L, Marçalo J, Godart C, Villeroy B. J. Am. Chem. Soc., 2010, 132(24): 8484.
[65]
Lyon J T, Hu H S, Andrews L, Li J. Proc. Natl. Acad. Sci. U. S. A., 2007, 104(48): 18919.
[66]
Hu H S, Qiu Y H, Xiong X G, Eugen Schwarz W H, Li J. Chem. Sci., 2012, 3(9): 2786.
[67]
Han J, Dai X, Cheng C, Xin M S, Wang Z G, Huai P, Zhang R Q. J. Phys. Chem. C, 2013, 117(50): 26849.
[68]
de Melo G F, Vasiliu M, Liu G X, Ciborowski S, Zhu Z G, Blankenhorn M, Harris R, Martinez-Martinez C, Dipalo M, Peterson K A, Bowen K H, Dixon D A. J. Phys. Chem. A, 2022, 126(50): 9392.
[69]
Jiang H J, Yu X J, Guo M, Yao Y R, Meng Q Y, Echegoyen L, Autschbach J, Chen N. J. Am. Chem. Soc., 2023, 145(10): 5645.
[70]
Mullane K C, Hrobárik P, Cheisson T, Manor B C, Carroll P J, Schelter E J. Inorg. Chem., 2019, 58(7): 4152.
[71]
Kirker I, Kaltsoyannis N. Dalton Trans., 2011, 40(1): 124.
[72]
Kelley M P, Popov I A, Jung J, Batista E R, Yang P. Nat. Commun., 2020, 11: 1558.
[73]
Wu Q Y, Cheng Z P, Lan J H, Wang C Z, Chai Z F, Gibson J K, Shi W Q. Dalton Trans., 2018, 47(36): 12718.
[74]
Chi X W, Wu Q Y, Lan J H, Wang C Z, Zhang Q, Chai Z F, Shi W Q. Organometallics, 2019, 38(9): 1963.
[75]
Li A L, Zhang N X, Wu Q Y, Wang C Z, Lan J H, Nie C M, Chai Z F, Shi W Q. Organometallics, 2021, 40(11): 1719.
[76]
Wu Q Y, Wang C Z, Lan J H, Xiao C L, Wang X K, Zhao Y L, Chai Z F, Shi W Q. Inorg. Chem., 2014, 53(18): 9607.
[77]
Wu Q Y, Lan J H, Wang C Z, Zhao Y L, Chai Z F, Shi W Q. J. Phys. Chem. A, 2015, 119(5): 922.
[78]
Yu J P, Liu K, Wu Q Y, Li B, Kong X H, Hu K Q, Mei L, Yuan L Y, Chai Z F, Shi W Q. Chin. J. Chem., 2021, 39(8): 2125.
[79]
Liu K, Chi X W, Guo Y, Wu Q Y, Hu K Q, Mei L, Chai Z F, Yu J P, Shi W Q. Inorg. Chem., 2022, 61(45): 17993.
[80]
Wu Q Y, Wang C Z, Lan J H, Chai Z F, Shi W Q. Dalton Trans., 2020, 49(44): 15895.
[81]
Liu K, Yu J P, Wu Q Y, Tao X B, Kong X H, Mei L, Hu K Q, Yuan L Y, Chai Z F, Shi W Q. Organometallics, 2020, 39(22): 4069.
[82]
Chi X W, Wu Q Y, Hao Q, Lan J H, Wang C Z, Zhang Q, Chai Z F, Shi W Q. Organometallics, 2018, 37(21): 3678.
[83]
Chi X W, Wu Q Y, Wang C Z, Yu J P, Liu K, Chi R A, Chai Z F, Shi W Q. Organometallics, 2022, 41(11): 1304.
[84]
King D M, Tuna F, McInnes E J L, McMaster J, Lewis W, Blake A J, Liddle S T. Science, 2012, 337(6095): 717.
[85]
King D M, Tuna F, McInnes E J L, McMaster J, Lewis W, Blake A J, Liddle S T. Nat. Chem., 2013, 5(6): 482.
[86]
Wu Q Y, Lan J H, Wang C Z, Cheng Z P, Chai Z F, Gibson J K, Shi W Q. Dalton Trans., 2016, 45(7): 3102.
[87]
Gagliardi L, Roos B O. Chem. Soc. Rev., 2007, 36(6): 893.
[88]
Hu H S, Wu G S, Li J. J. Nucl. Radiochem., 2009, 31: 25.
[89]
Su J, Li J. Prog. Chem., 2011, 23: 1329.

Funding

National Science Fund for Distinguished Young Scholars(21925603)
PDF(1552 KB)

Accesses

Citation

Detail

Sections
Recommended

/