Functionalization and Application of Polymer-Modified Proteins

Jiang Wan, Jingze Zhang, Hongling Chen, Hanmei Shen, Zhen Wang, Chun Zhang

Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 416-429.

PDF(8842 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8842 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 416-429. DOI: 10.7536/PC230706
Review

Functionalization and Application of Polymer-Modified Proteins

Author information +
History +

Abstract

As a kind of important biological macromolecules, proteins have been widely used in chemical and medical fields, such as biocatalysis, drug delivery, and molecular imaging due to their special three-dimensional spatial structure and high catalytic activity. However, there are a series of problems in the practical application of proteins. For example, proteins are easily inactivated in extreme environments. Protein drugs have strong immunogenicity in vivo, which leads to short half-life of drugs and causes adverse reactions in patients easily. Their low solubility in organic solvents limits their use in organic solvents. In order to solve the above problems, researchers have developed methods such as protein engineering and co-immobilization, but there are corresponding shortcomings. Polymer modification is one of the important methods, which can improve the properties of proteins from many aspects and expand the application of proteins. From this point of view, this review focuses on the latest research and classical literature on polymer-modified proteins, and introduces their ingenious modification methods to synthesize materials with excellent properties. The principle, practical application, existing problems and solutions of improving protein stability and activity, immunogenicity, solubility and self-assembly by polymer modification are summarized. On this basis, the challenges and possible development trends in the commercial and clinical translation of this strategy are analyzed.

Contents

1 Introduction

2 Stability and activity

2.1 Stability to temperature and pH

2.2 Stability to protease hydrolysis

2.3 Stability of chemical denaturants

2.4 Enhanced enzyme activity

2.5 Regulation of enzyme activity

3 Immunogenicity

4 Solubility

5 Self-assembly

5.1 Drug delivery

5.2 Molecular imaging

6 Conclusion and outlook

Key words

protein / polymer modification / stability and activity / immunogenicity / solubility / self-assembly

Cite this article

Download Citations
Jiang Wan , Jingze Zhang , Hongling Chen , et al . Functionalization and Application of Polymer-Modified Proteins[J]. Progress in Chemistry. 2024, 36(3): 416-429 https://doi.org/10.7536/PC230706

References

[1]
Baker S L, Munasinghe A, Murata H, Lin P, Matyjaszewski K, Colina C M, Russell A J. Biomacromolecules, 2018, 19 (9): 3798.
[2]
Liu S J, Jiang S Y. Nano Today, 2016, 11 (3): 285.
[3]
Ingenbosch K N, Vieyto-Nuñez J C, Ruiz-Blanco Y B, Mayer C, Hoffmann-Jacobsen K, Sanchez-Garcia E. J. Org. Chem., 2022, 87 (3): 1669.
[4]
Silva C, Martins M, Jing S, Fu J J, Cavaco-Paulo A. Crit. Rev. Biotechnol., 2018, 38 (3): 335.
[5]
Bosio V E, Islan G A, Martinez Y N, Duran N, Castro G R. Crit. Rev. Biotechnol., 2016, 36 (3): 447.
[6]
Kujawa J, Glodek M, Li G Q, Al-Gharabli S, Knozowska K, Kujawski W. Sci. Total Environ., 2021, 801: 149647.
[7]
Russell A J, Baker S L, Colina C M, Figg C A, Kaar J L, Matyjaszewski K, Simakova A, Sumerlin B S. AIChE. J., 2018, 64 (9): 3230.
[8]
Ge J, Lei J D, Zare R N. Nat. Nanotechnol., 2012, 7 (7): 428.
[9]
Khan S, Babadaei M M N, Hasan A, Edis Z, Attar F, Siddique R, Bai Q, Sharifi M, Falahati M. J. Adv. Res., 2021, 33: 227.
[10]
Pagar A D, Patil M D, Flood D T, Yoo T H, Dawson P E, Yun H. Chem. Rev., 2021, 121 (10): 6173.
[11]
Drienovská I, Roelfes G. Nat. Catal., 2020, 3 (3): 193.
[12]
Pessatti T B, Terenzi H, Bertoldo J B. Catalysts, 2021, 11 (12): 1466.
[13]
Shadish J A, DeForest C A. Matter, 2020, 2 (1): 50.
[14]
Abuchowski A, van Es T, Palczuk N C, Davis F F. J. Biol. Chem., 1977, 252 (11): 3578.
[15]
Cobo I, Li M, Sumerlin B S, Perrier S. Nat. Mater., 2015, 14 (2): 143.
[16]
Schulz J D, Patt M, Basler S, Kries H, Hilvert D, Gauthier M A, Leroux J C. Adv. Mater., 2016, 28 (7): 1455.
[17]
Murata H, Carmali S, Baker S L, Matyjaszewski K, Russell A J. Nat. Commun., 2018, 9 (1): 845.
[18]
Liu X Y, Gao W P. Angewandte Chemie, International Edition, 2021, 60 (20): 11024.
[19]
Cao L M, Shi X J, Cui Y C, Yang W K, Chen G J, Yuan L, Chen H. Polym. Chem., 2016, 7 (32): 5139.
[20]
Messina M S, Messina K M M, Bhattacharya A, Montgomery H R, Maynard H D. Prog. Polym. Sci., 2020, 100: 101186.
[21]
Wright T A, Page R C, Konkolewicz D. Polym. Chem., 2019, 10 (4): 434.
[22]
Giri P, Pagar A D, Patil M D, Yun H. Biotechnol. Adv., 2021, 53: 107868.
[23]
Duncan R. J. Drug Target., 2017, 25 (9-10): 759.
[24]
Ekladious I, Colson Y L, Grinstaff M W. Nat. Rev. Drug Discov., 2019, 18 (4): 273.
[25]
Thakor P, Bhavana V, Sharma R, Srivastava S, Singh S B, Mehra N K. Drug Discov. Today, 2020, 25 (9): 1718.
[26]
Mukherjee I, Sinha S K, Datta S, De P. Biomacromolecules, 2018, 19 (6): 2286.
[27]
Huynh V, Ifraimov N, Wylie R G. Polymers, 2021, 13 (16): 2772.
[28]
MacKenzie K J, Francis M B. J. Am. Chem. Soc., 2013, 135 (1): 293.
[29]
Rahman M S, Brown J, Murphy R, Carnes S, Carey B, Averick S, Konkolewicz D, Page R C. Biomacromolecules, 2021, 22 (2): 309.
[30]
Li P Y, Sun M M, Xu Z K, Liu X Y, Zhao W G, Gao W P. Biomacromolecules, 2018, 19 (11): 4472.
[31]
Kim J S, Sirois A R, Vazquez Cegla A J, Jumai'an E, Murata N, Buck M E, Moore S J. Bioconjugate Chem., 2019, 30 (4): 1220.
[32]
Kaupbayeva B, Russell A J. Prog. Polym. Sci., 2020, 101: 101194.
[33]
Xiong Q Y, Zhang X Y, Wei W F, Wei G, Su Z Q. Polym. Chem., 2020, 11 (10): 1673.
[34]
Pelegri-O'Day E M, Lin E W, Maynard H D. J. Am. Chem. Soc., 2014, 136 (41): 14323.
[35]
Choi J M, Han S S, Kim H S. Biotechnol. Adv., 2015, 33 (7): 1443.
[36]
Averick S, Simakova A, Park S, Konkolewicz D, Magenau A J D, Mehl R A, Matyjaszewski K. ACS Macro Lett., 2012, 1 (1): 6.
[37]
Tian K Y, Tai K E, Chua B J W, Li Z. Bioresour. Technol., 2017, 245 (Pt B): 1491.
[38]
Zaak H, Siar E H, Kornecki J F, Fernandez-Lopez L, Pedrero S G, Virgen-Ortíz J J, Fernandez-Lafuente R. Process. Biochem., 2017, 56: 117.
[39]
Kovaliov M, Allegrezza M L, Richter B, Konkolewicz D, Averick S. Polymer, 2018, 137: 338.
[40]
Milczek E M. Chem. Rev., 2018, 118 (1): 119.
[41]
Cummings C S, Campbell A S, Baker S L, Carmali S, Murata H, Russell A J. Biomacromolecules, 2017, 18 (2): 576.
[42]
Cummings C, Murata H, Koepsel R, Russell A J. Biomacromolecules, 2014, 15 (3): 763.
[43]
Campbell A S, Murata H, Carmali S, Matyjaszewski K, Islam M F, Russell A J. Biosens. Bioelectron., 2016, 86: 446.
[44]
Lucius M, Falatach R, McGlone C, Makaroff K, Danielson A, Williams C, Nix J C, Konkolewicz D, Page R C, Berberich J A. Biomacromolecules, 2016, 17 (3): 1123.
[45]
Rodríguez-Martínez J A, Solá R J, Castillo B, Cintrón-Colón H R, Rivera-Rivera I, Barletta G, Griebenow K. Biotechnol. Bioeng., 2008, 101 (6): 1142.
[46]
Yang C, Lu D N, Liu Z. Biochemistry, 2011, 50 (13): 2585.
[47]
Farhadian S, Shareghi B, Saboury A A, Babaheydari A K, Raisi F, Heidari E. Int. J. Biol. Macromol., 2016, 92: 523.
[48]
Munasinghe A, Baker S L, Lin P, Russell A J, Colina C M. Soft Matter, 2020, 16 (2): 456.
[49]
Grigoletto A, Mero A, Zanusso I, Schiavon O, Pasut G. Macromol. Biosci., 2016, 16 (1): 50.
[50]
Sharma S, Kaur P, Jain A, Rajeswari M R, Gupta M N. Biomacromolecules, 2003, 4 (2): 330.
[51]
Verduzco L E, García-Pérez A L, Guerrero-Santos R, Ledezma-Pérez A, Romero-García J, Torres-Lubián J R. Can. J. Chem., 2021, 99 (1): 10.
[52]
Polizzi K M, Bommarius A S, Broering J M, Chaparro-Riggers J F. Curr. Opin. Chem. Biol., 2007, 11 (2): 220.
[53]
Riccardi C M, Cole K S, Benson K R, Ward J R, Bassett K M, Zhang Y R, Zore O V, Stromer B, Kasi R M, Kumar C V. Bioconjugate Chem., 2014, 25 (8): 1501.
[54]
Sen S, Martin J D, Argyropoulos D S. ACS Sustainable Chem. Eng., 2013, 1 (8): 858.
[55]
Wright T A, Dougherty M L, Schmitz B, Burridge K M, Makaroff K, Stewart J M, Fischesser H D, Shepherd J T, Berberich J A, Konkolewicz D, Page R C. Bioconjugate Chem., 2017, 28 (10): 2638.
[56]
Cui Y C, Li Z H, Wang L, Liu F, Yuan Y Q, Wang H W, Xue L L, Pan J J, Chen G J, Chen H, Yuan L. J. Mater. Chem. B, 2016, 4 (32): 5437.
[57]
Tucker B S, Coughlin M L, Figg C A, Sumerlin B S. ACS Macro Lett., 2017, 6 (4): 452.
[58]
Hwang E T, Lee S. ACS Catal., 2019, 9 (5): 4402.
[59]
Benítez-Mateos A I, Roura Padrosa D, Paradisi F. Nat. Chem., 2022, 14 (5): 489.
[60]
Vaidya B K, Ingavle G C, Ponrathnam S, Kulkarni B D, Nene S N. Bioresour. Technol., 2008, 99 (9): 3623.
[61]
Zhang Y, Wang B-C, Wang P, Ju X-J, Zhang M-J, Xie R, Liu Z, Wang W, Chu L-Y. React. Chem. Eng., 2022, 7 (2): 275.
[62]
Chiang C W, Liu X, Sun J, Guo J, Tao L, Gao W. Nano Lett., 2020, 20 (2): 1383.
[63]
Wang L, Yuan L, Wang H W, Liu X L, Li X M, Chen H. Bioconjugate Chem., 2014, 25 (7): 1252.
[64]
Li X, Wang L, Chen G J, Haddleton D M, Chen H. Chem. Commun., 2014, 50 (49): 6506.
[65]
Yang W K, Zhu L J, Cui Y C, Wang H W, Wang Y W, Yuan L, Chen H. ACS Appl. Mater. Interfaces, 2016, 8 (25): 15967.
[66]
Sheremet'ev S V, Lonshakov D V, Belosludtseva E M, Borisova O V, Sidorova A V, Kalinskii A V. Pharm. Chem. J., 2021, 55 (7): 698.
[67]
Zhang X W, Wang H, Ma Z G, Wu B J. Expert Opin. Drug Metab. Toxicol., 2014, 10 (12): 1691.
[68]
Lee K L, Shukla S, Wu M Z, Ayat N R, El Sanadi C E, Wen A M, Edelbrock J F, Pokorski J K, Commandeur U, Dubyak G R, Steinmetz N F. Acta Biomater., 2015, 19: 166.
[69]
Harris J M, Chess R B. Nat. Rev. Drug Discov., 2003, 2 (3): 214.
[70]
Steinmetz N F, Manchester M. Biomacromolecules, 2009, 10 (4): 784.
[71]
Mok H, Palmer D J, Ng P, Barry M A. Mol. Ther., 2005, 11 (1): 66.
[72]
Eto Y, Yoshioka Y, Ishida T, Yao X L, Morishige T, Narimatsu S, Mizuguchi H, Mukai Y, Okada N, Kiwada H, Nakagawa S. Biol. Pharm. Bull., 2010, 33 (9): 1540.
[73]
Church D C, Davis E, Caparco A A, Takiguchi L, Chung Y H, Steinmetz N F, Pokorski J K. Cell Rep. Phys. Sci., 2022, 3 (10): 101067.
[74]
Crooke S N, Zheng J K, Ganewatta M S, Guldberg S M, Reineke T M, Finn M G. ACS Appl. Bio Mater., 2019, 2 (1): 93.
[75]
Wu J R, Lu S Z, Zheng Z Y, Zhu L, Zhan X B. Prep. Biochem. Biotechnol., 2016, 46 (8): 788.
[76]
Lee P W, Isarov S A, Wallat J D, Molugu S K, Shukla S, Sun J E P, Zhang J, Zheng Y, Lucius Dougherty M, Konkolewicz D, Stewart P L, Steinmetz N F, Hore M J A, Pokorski J K. J. Am. Chem. Soc., 2017, 139 (9): 3312.
[77]
Kinnear C, Moore T L, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Chem. Rev., 2017, 117 (17): 11476.
[78]
Stevens C A, Kaur K, Klok H A. Adv. Drug Deliv. Rev., 2021, 174: 447.
[79]
Hu L, Zhang Y Y, Gao C Y. Progress in Chemistry, 2009, 21: 1254.
(胡玲, 张裕英, 高长有. 化学进展, 2009, 21: 1254.)
[80]
Konieczny S, Krumm C, Doert D, Neufeld K, Tiller J C. J. Biotechnol., 2014, 181: 55.
[81]
Sheng S L, Farinas E T. Catalysts, 2021, 11 (5): 606.
[82]
Zhao H. Biotechnol. Adv., 2020, 45: 107638.
[83]
Li Y, Zhang R, Xu Y. Int. J. Biol. Macromol., 2021, 168: 412.
[84]
Ismail A R, Kashtoh H, Baek K H. Int. J. Biol. Macromol., 2021, 187: 127.
[85]
Chado G R, Holland E N, Tice A K, Stoykovich M P, Kaar J L. ACS Catal., 2018, 8 (12): 11579.
[86]
Konieczny S, Leurs M, Tiller J C. ChemBioChem, 2015, 16 (1): 83.
[87]
Cummings C S, Murata H, Matyjaszewski K, Russell A J. ACS Macro Lett., 2016, 5 (4): 493.
[88]
Baker S L, Munasinghe A, Kaupbayeva B, Rebecca Kang N, Certiat M, Murata H, Matyjaszewski K, Lin P, Colina C M, Russell A J. Nat. Commun., 2019, 10 (1): 4718.
[89]
Takahashi K, Nishimura H, Yoshimoto T, Saito Y, Inada Y. Biochem. Biophys. Res. Commun., 1984, 121 (1): 261.
[90]
Inada Y, Takahashi K, Yoshimoto T, Kodera Y, Matsushima A, Saito Y. Trends Biotechnol., 1988, 6 (6): 131.
[91]
Matsushima A, Kodera Y, Hiroto M, Nishimura H, Inada Y. J. Mol. Catal. B: Enzym., 1996, 2 (1): 1.
[92]
Yoshihara E, Sasaki M, Nabil A, Iijima M, Ebara M. Molecules, 2022, 27 (3): 1051.
[93]
Steiert E, Ewald J, Wagner A, Hellmich U A, Frey H, Wich P R. Polym. Chem., 2020, 11 (2): 551.
[94]
Wang L, Gong C C, Yuan X Z, Wei G. Nanomaterials, 2019, 9 (2): 285.
[95]
Varlas S, Maitland G L, Derry M J. Polymers, 2021, 13 (16): 2603.
[96]
Shirinichi F, Ibrahim T, Rodriguez M, Sun H. J. Polym. Sci., 2023, 61 (8): 631.
[97]
Ko J H, Maynard H D. Chem. Soc. Rev., 2018, 47 (24): 8998.
[98]
Hannink J M, Cornelissen J J L M, Farrera J A, Foubert P, De Schryver F C, Sommerdijk N A J M, Nolte R J M. Angewandte Chemie, International Edition, 2001, 40 (24): 4732.
[99]
Liu Z Y, Dong C H, Wang X M, Wang H J, Li W, Tan J, Chang J. ACS Appl. Mater. Interfaces, 2014, 6 (4): 2393.
[100]
Huang A, Paloni J M, Wang A, Obermeyer A C, Sureka H V, Yao H, Olsen B D. Biomacromolecules, 2019, 20 (10): 3713.
[101]
Lam C N, Olsen B D. Soft Matter, 2013, 9 (8): 2393.
[102]
Dutta K, Kanjilal P, Das R, Thayumanavan S. Angewandte Chemie, International Edition, 2021, 60 (4): 1821.
[103]
Moatsou D, Li J, Ranji A, Pitto-Barry A, Ntai I, Jewett M C, O'Reilly R K. Bioconjugate Chem., 2015, 26 (9): 1890.
[104]
Bao C Y, Chen J, Li D, Zhang A T, Zhang Q. Polym. Chem., 2020, 11 (7): 1386.
[105]
Dong X H, Obermeyer A C, Olsen B D. Angewandte Chemie, International Edition, 2017, 56 (5): 1273.
[106]
Viana D B, Mathieu-Gaedke M, Leão N M, Böker A, Ferreira Soares D C, Glebe U, Tebaldi M L. J. Drug Deliv. Sci. Technol., 2023, 79: 103995.
[107]
Jiang Y Y, Wong S, Chen F, Chang T, Lu H X, Stenzel M H. Bioconjugate Chem., 2017, 28 (4): 979.
[108]
Bartnikowski M, Dargaville T R, Ivanovski S, Hutmacher D W. Prog. Polym. Sci., 2019, 96: 1.
[109]
Cummings C S, Fein K, Murata H, Ball R L, Russell A J, Whitehead K A. J. Control. Release, 2017, 255: 270.
[110]
Li Z C, Li G K, Hu Y L. Progress in Chemistry, 2017, 29: 1480.
(李子程, 李攻科, 胡玉玲. 化学进展, 2017, 29: 1480.)
[111]
Vanparijs N, De Coen R, Laplace D, Louage B, Maji S, Lybaert L, Hoogenboom R, De Geest B G. Chem. Commun., 2015, 51 (73): 13972.
[112]
Edwardson T G W, Levasseur M D, Tetter S, Steinauer A, Hori M, Hilvert D. Chem. Rev., 2022, 122 (9): 9145.
[113]
Rother M, Nussbaumer M G, Renggli K, Bruns N. Chem. Soc. Rev., 2016, 45 (22): 6213.
[114]
Nussbaumer M G, Duskey J T, Rother M, Renggli K, Chami M, Bruns N. Adv. Sci. (Weinheim, Ger.), 2016, 3 (10): 1600046.
[115]
Kim P H, Kim J, Kim T I, Nam H Y, Yockman J W, Kim M, Kim S W, Yun C O. Biomaterials, 2011, 32 (35): 9328.
[116]
Thambi T, Hong J, Yoon A R, Yun C O. Cancer Gene Ther., 2022, 29 (10): 1321.
[117]
Kim P H, Kim T I, Yockman J W, Kim S W, Yun C O. Biomaterials, 2010, 31 (7): 1865.
[118]
Sun Y P, Lv X Q, Ding P T, Wang L, Sun Y J, Li S, Zhang H M, Gao Z B. Acta Biomater., 2019, 97: 93.
[119]
Luo Y N, Wang X N, Du D, Lin Y H. Biomater. Sci., 2015, 3 (10): 1386.
[120]
Duret D, Haftek-Terreau Z, Carretier M, Berki T, Ladavière C, Monier K, Bouvet P, Marvel J, Leverrier Y, Charreyre M T, Favier A. Polym. Chem., 2018, 9 (14): 1857.
[121]
Duret D, Haftek-Terreau Z, Carretier M, Ladavière C, Charreyre M T, Favier A. Polym. Chem., 2017, 8 (10): 1611.
[122]
Berki T, Bakunts A, Duret D, Fabre L, Ladavière C, Orsi A, Charreyre M T, Raimondi A, van Anken E, Favier A. ACS Omega, 2019, 4 (7): 12841.
[123]
Zhang Y C, Gambardella A, Üçüncü M, Geng J, Clavadetscher J, Bradley M, Lilienkampf A. Chem. Commun., 2020, 56 (89): 13856.
[124]
Majonis D, Ornatsky O, Weinrich D, Winnik M A. Biomacromolecules, 2013, 14 (5): 1503.
[125]
Zhang L B, Zhao W G, Liu X Y, Wang G L, Wang Y, Li D, Xie L Z, Gao Y, Deng H T, Gao W P. Biomaterials, 2015, 64: 2.
[126]
Chatelain P, Malievskiy O, Radziuk K, Senatorova G, Abdou M O, Vlachopapadopoulou E, Skorodok Y, Peterkova V, Leff J A, Beckert M, Group T T G W. J. Clin. Endocrinol. Metab., 2017, 102 (5): 1673.
[127]
Sprogøe K, Mortensen E, Karpf D B, Leff J A. Endocr. Connect., 2017, 6 (8): R171.
[128]
Ebied A M, Patel K H, Cooper-DeHoff R M. Am. J. Med., 2020, 133 (6): 675.
[129]
Chowdary P, Fosbury E, Riddell A, Mathias M. J. Blood Med., 2016, 7: 187.
[130]
Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra L A, Patel M, Thakkar H. Int. J. Pharm., 2022, 623: 121863.
[131]
Chen C J, Ng D Y W, Weil T. Prog. Polym. Sci., 2020, 105: 101241.
[132]
Mukhopadhyay A, Das T, Datta A, Sharma K P. Biomacromolecules, 2018, 19 (3): 943.
[133]
Brendel J C, Catrouillet S, Sanchis J, Jolliffe K A, Perrier S. Polym. Chem., 2019, 10 (20): 2616.
[134]
Brendel J C, Sanchis J, Catrouillet S, Czuba E, Chen M Z, Long B M, Nowell C, Johnston A, Jolliffe K A, Perrier S. Angewandte Chemie, International Edition, 2018, 57 (51): 16678.
[135]
Hu J, Wang G L, Zhao W G, Liu X Y, Zhang L B, Gao W P. Biomaterials, 2016, 96: 84.
[136]
Morgenstern J, Gil Alvaradejo G, Bluthardt N, Beloqui A, Delaittre G, Hubbuch J. Biomacromolecules, 2018, 19 (11): 4250.
[137]
Tucker B S, Stewart J D, Aguirre J I, Holliday L S, Figg C A, Messer J G, Sumerlin B S. Biomacromolecules, 2015, 16 (8): 2374.
[138]
Rose D A, Treacy J W, Yang Z J, Ko J H, Houk K N, Maynard H D. J. Am. Chem. Soc., 2022, 144 (13): 6050.
[139]
Diehl K L, Kolesnichenko I V, Robotham S A, Bachman J L, Zhong Y, Brodbelt J S, Anslyn E V. Nat. Chem., 2016, 8 (10): 968.
[140]
Liu B, Ianosi-Irimie M, Thayumanavan S. ACS Nano, 2019, 13 (8): 9408.
[141]
Zhao E L, Soltani M, Smith A K, Hunt J P, Knotts T A IV, Bundy B C. J. Biotechnol., 2022, 345: 55.
[142]
Li H, Yang Y Y, Li G P, Wang X, Hu J X, Rong M X, Rong J. Chinese Journal of Biologicals, 2021, 34: 941.
(李欢, 杨玉莹, 李国攀, 王席, 胡基雄, 荣明轩, 荣俊. 中国生物制品学杂志, 2021, 34: 941.).
[143]
Khalil A, Würthwein G, Golitsch J, Hempel G, Fobker M, Gerss J, Möricke A, Zimmermann M, Smisek P, Zucchetti M, Nath C, Attarbaschi A, Von Stackelberg A, Gökbuget N, Rizzari C, Conter V, Schrappe M, Boos J, Lanvers-Kaminsky C. Haematologica, 2022, 107 (1): 49.
[144]
Risma K A, Edwards K M, Hummell D S, Little F F, Norton A E, Stallings A, Wood R A, Milner J D. J. Allergy Clin. Immunol., 2021, 147 (6): 2075.
[145]
Bigini P, Gobbi M, Bonati M, Clavenna A, Zucchetti M, Garattini S, Pasut G. Nat. Nanotechnol., 2021, 16 (11): 1169.
[146]
Zhang R S, Jain S, Rowland M, Hussain N, Agarwal M, Gregoriadis G. J. Diabetes Sci. Technol., 2010, 4 (3): 532.
[147]
Duncan R, Vicent M J. Adv. Drug Deliv. Rev., 2010, 62 (2): 272.
[148]
Smorodinsky N, Von Specht B U, Cesla R, Shaltiel S. Immunol. Lett., 1981, 2 (5/6): 305.
[149]
Viegas T X, Bentley M D, Harris J M, Fang Z H, Yoon K, Dizman B, Weimer R, Mero A, Pasut G, Veronese F M. Bioconjugate Chem., 2011, 22 (5): 976.
[150]
Thomas A, Müller S S, Frey H. Biomacromolecules, 2014, 15 (6): 1935.

Funding

National Natural Science Foundation of China(22275062)
National Natural Science Foundation of China(22005110)
Undergraduates Research Training Program(S202310487273)
PDF(8842 KB)

Accesses

Citation

Detail

Sections
Recommended

/