Sulfate Radicals: A New Tool for Enhancing Sludge Dewatering

Yue Lai, Chao Wang, Jie Zhang, Shungui Zhou, Changgeng Liu, Jie Ye

Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 798-814.

PDF(10027 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10027 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 798-814. DOI: 10.7536/PC230707
Review

Sulfate Radicals: A New Tool for Enhancing Sludge Dewatering

Author information +
History +

Abstract

sludge is an inevitable by-product of the wastewater treatment process and due to its high water content,large volume,and inclusion of a large amount of toxic and hazardous substances,needs to be minimized and harmlessly treated.However,sludge possesses extracellular polymeric substances(EPS)formed by ionization of negatively charged functional groups,which maintain a stable hydrated colloidal structure and prevent the release of water.this is a key factor in the difficulty of sludge dewatering.in the last decade,sulfate radical-Based advanced oxidation processes(SR-AOPs)have received considerable attention due to their high efficiency for EPS disintegration,rapid reaction time and environmental friendliness,and thus sulfate radicals have become a new powerful tool for enhancing sludge dewaterability.in This paper,the development timeline and activation mechanisms of sulfate radicals are reviewed in detail,and the research advances of SR-AOPs for improving sludge dewaterability and removing micropollutants and heavy metals from sludge are systematically evaluated.based on the current scientific problems of SR-AOPs in sludge conditioning,the future research directions of SR-AOPs are proposed from the perspectives of mechanism research,cost-effectiveness,and experimental scale,in order to provide a solid theoretical reference for sludge conditioning in wastewater treatment plants in China。

Contents

1 Introduction

2 Timeline of sulfate radicals

3 Mechanism of sulfate radicals activation

3.1 Transition metal activation

3.2 Photo activation

3.3 Heat activation

3.4 Alkali activation

3.5 Metal-free catalyst activation

4 Sludge dewaterability improved by SR-AOPs

4.1 Iron activated methods

4.2 Heat activated methods

4.3 Electrochemically activated methods

4.4 Alkali activated methods

4.5 Other activation methods

5 Removal of micropollutants

6 Removal of heavy metals

7 Sludge dewatering mechanism

8 Conclusion and outlook

Key words

sulfate radicals / advanced oxidation process / sludge dewatering / conditioning mechanism / extracellular polymeric substances

Cite this article

Download Citations
Yue Lai , Chao Wang , Jie Zhang , et al . Sulfate Radicals: A New Tool for Enhancing Sludge Dewatering[J]. Progress in Chemistry. 2024, 36(5): 798-814 https://doi.org/10.7536/PC230707

References

[1]
Wu B R, Dai X H, Chai X L. Water Res., 2020, 180: 115912.
[2]
Zhang X, Li X X, Li R, Wu Y L. Energy Fuels, 2020, 34(11): 13268.
[3]
Fijalkowski K, Rorat A, Grobelak A, Kacprzak M J. J. Environ. Manag., 2017, 203: 1126.
[4]
Cao B D, Zhang T, Zhang W J, Wang D S. Water Res., 2021, 189: 116650.
[5]
Xu Q X, Huang Q S, Wei W, Sun J, Dai X H, Ni B J. Water Res., 2020, 187: 116440.
[6]
Chen M J, Ling X, Cai A H, Deng J, Zhu S J, Zeng H X, Li X Y. J. Environ. Chem. Eng., 2022, 10(3): 107921.
[7]
Neyens E. J. Hazard. Mater., 2004, 106(2-3): 83.
[8]
Guan R P, Yuan X Z, Wu Z B, Jiang L B, Li Y F, Zeng G M. Chem. Eng. J., 2018, 339: 519.
[9]
More T T, Yadav J S S, Yan S, Tyagi R D, Surampalli R Y. J. Environ. Manag., 2014, 144: 1.
[10]
Zhang W J, Wang H D, Li L Q, Li D D, Wang Q D, Xu Q Y, Wang D S. Sci. Total Environ., 2019, 670: 98.
[11]
Yang Q H. Master Dessertation of Harbin Institute of Technology, 2019.
(杨秦辉. 哈尔滨工业大学硕士论文, 2019).
[12]
Xiao Y F. Master Dessertation of Nanjing Agricultural University, 2019.
(肖一帆. 南京农业大学硕士论文, 2019).
[13]
Neyens E, Baeyens J. J. Hazard. Mater., 2003, 98(1/3): 33.
[14]
Giannakis S, Lin K Y A, Ghanbari F. Chem. Eng. J., 2021, 406: 127083.
[15]
Wu S H, Shen L Y, Lin Y, Yin K, Yang C P. Chem. Eng. J., 2021, 414: 128872.
[16]
Xie P C, Zhang L, Chen J H, Ding J Q, Wan Y, Wang S L, Wang Z P, Zhou A J, Ma J. Water Res., 2019, 149: 169.
[17]
Yuan D L, Zhang C, Tang S F, Sun M T, Zhang Y T, Rao Y D, Wang Z B, Ke J. Sci. Total Environ., 2020, 727: 138773.
[18]
Ahmed N, Vione D, Rivoira L, Carena L, Castiglioni M, Bruzzoniti M C. Molecules, 2021, 26(15): 4584.
[19]
Guerra-Rodríguez S, Rodríguez E, Singh D, Rodríguez-Chueca J. Water, 2018, 10(12): 1828.
[20]
Bose S, Kumar M. Curr. Opin. Chem. Eng., 2022, 36: 100826.
[21]
Yusuf A, Giwa A, Eniola J O, Amusa H K, Bilad M R. J. Hazard. Mater. Adv., 2022, 7: 100108.
[22]
Hu L M, Wang P, Shen T Y, Wang Q, Wang X J, Xu P, Zheng Q Z, Zhang G S. Sci. Total Environ., 2020, 722: 137831.
[23]
Liu Y X, Liu L, Wang Y. Environ. Sci. Technol., 2021, 55(14): 9691.
[24]
Zhou Z, Liu X T, Sun K, Lin C Y, Ma J, He M C, Ouyang W. Chem. Eng. J., 2019, 372: 836.
[25]
Pennington D E, Haim A. J. Am. Chem. Soc., 1968, 90(14): 3700.
[26]
Anderson J M, Kochi J K. J. Am. Chem. Soc., 1970, 92(6): 1651.
[27]
Lee Y L. Doctor Dissertation of the University of Texas at Austin, 1986.
[28]
Fischer M, Warneck P. J. Phys. Chem., 1996, 100(37): 15111.
[29]
Warneck P, Ziajka J. Ber. Der Bunsengesellschaft Für Phys. Chem., 1995, 99(1): 59.
[30]
Peyton G R. Mar. Chem., 1993, 41(1/3): 91.
[31]
Yang S Y, Wang P, Yang X, Wei G, Zhang W Y, Shan L. J. Environ. Sci., 2009, 21(9): 1175.
[32]
Liang C J, Su H W. Ind. Eng. Chem. Res., 2009, 48(11): 5558.
[33]
Zhao J Y, Zhang Y B, Quan X, Chen S. Sep. Purif. Technol., 2010, 71(3): 302.
[34]
Hu P D, Su H R, Chen Z Y, Yu C Y, Li Q L, Zhou B X, Alvarez P J J, Long M C. Environ. Sci. Technol., 2017, 51(19): 11288.
[35]
Liang L, Yue X Y, Dong S Y, Feng J L, Sun J H, Pan Y W, Zhou M H. Sep. Purif. Technol., 2021, 272: 118923.
[36]
Duan X G, Sun H Q, Wang S B. Acc. Chem. Res., 2018, 51(3): 678.
[37]
Guan C T, Jiang J, Luo C W, Pang S Y, Yang Y, Wang Z, Ma J, Yu J, Zhao X. Chem. Eng. J., 2018, 337: 40.
[38]
Sun H Q, Liu S Z, Zhou G L, Ang H M, Tadé M O, Wang S B. ACS Appl. Mater. Interfaces, 2012, 4(10): 5466.
[39]
Lee H, Lee H J, Jeong J, Lee J, Park N B, Lee C H. Chem. Eng. J., 2015, 266: 28.
[40]
Lin W, Liu X, Ding A, Ngo H H, Zhang R R, Nan J, Ma J, Li G B. J. Water Process. Eng., 2022, 45: 102468.
[41]
Liu C G, Wu B, Chen X E. Chem. Eng. J., 2018, 335: 865.
[42]
Ushani U, Lu X Q, Wang J H, Zhang Z Y, Dai J J, Tan Y J, Wang S S, Li W J, Niu C X, Cai T, Wang N, Zhen G Y. Chem. Eng. J., 2020, 402: 126232.
[43]
Bian C, Ge D D, Wang G J, Dong Y T, Li W, Zhu N W, Yuan H P. Chemosphere, 2021, 262: 128385.
[44]
Lee K, Kim M S, Lee C. Sustain. Environ. Res., 2016, 26(4): 177.
[45]
Ai J, Wang Z Y, Dionysiou D D, Liu M, Deng Y, Tang M Y, Liao G Y, Hu A B, Zhang W J. Water Res., 2021, 189: 116652.
[46]
Kennedy R J, Stock A M. J. Org. Chem., 1960, 25(11): 1901.
[47]
Dogliotti L, Hayon E. J. Phys. Chem., 1967, 71(8): 2511.
[48]
Va L, Aleeva G P. Zhurnal Fizicheskoi Khimii, 1972, 11(46): 2788.
[49]
Neta P, Madhavan V, Zemel H, Fessenden R W. J. Am. Chem. Soc., 1977, 99(1): 163.
[50]
Neta P, Huie R E. Environ. Health Perspect., 1985, 64: 209.
[51]
Huie R E, Clifton C L. Int. J. Chem. Kinet., 1989, 21(8): 611.
[52]
Kislenko V N, Berlin A A, Litovchenko N V. Kinet. Catal., 1997, 38(3): 359.
[53]
Liu L Y, Yan H, Yang C, Zhu G R. RSC Adv., 2018, 8(52): 29756.
[54]
Li Y T, Li D, Lai L J, Li Y H. Chemosphere, 2020, 238: 124657.
[55]
Liu C G, Chen D D, Chen X E, Wu B. Chem. Eng. J., 2021, 420: 127650.
[56]
Tian W J, Chen S, Zhang H Y, Wang H, Wang S B. Curr. Opin. Chem. Eng., 2022, 37: 100838.
[57]
Gao Y W, Zhu Y, Chen Z H, Zeng Q Y, Hu C. Chem. Eng. J., 2020, 394: 123936.
[58]
Ding Y B, Wang X R, Fu L B, Peng X Q, Pan C, Mao Q H, Wang C J, Yan J C. Sci. Total Environ., 2021, 765: 142794.
[59]
Duan X D, Yang S S, Wacławek S, Fang G D, Xiao R Y, Dionysiou D D. J. Environ. Chem. Eng., 2020, 8(4): 103849.
[60]
Wang J Q, Hasaer B, Yang M, Liu R P, Hu C Z, Liu H J, Qu J H. Sci. Total Environ., 2020, 713: 136530.
[61]
Dong H Y, Wei G F, Yin D Q, Guan X H. J. Hazard. Mater., 2020, 384: 121497.
[62]
Oh W D, Dong Z L, Lim T T. Appl. Catal. B Environ., 2016, 194: 169.
[63]
Zhou D N, Chen L, Li J J, Wu F. Chem. Eng. J., 2018, 346: 726.
[64]
Yang Q, Ma Y H, Chen F, Yao F B, Sun J, Wang S N, Yi K X, Hou L H, Li X M, Wang D B. Chem. Eng. J., 2019, 378: 122149.
[65]
Ghauch A, Baalbaki A, Amasha M, El Asmar R, Tantawi O. Chem. Eng. J., 2017, 317: 1012.
[66]
Anipsitakis G P, Dionysiou D D. Appl. Catal. B Environ., 2004, 54(3): 155.
[67]
Zhao D, Liao X Y, Yan X L, Huling S G, Chai T Y, Tao H. J. Hazard. Mater., 2013, 254: 228.
[68]
Wang H, Zou Y R, Luo T, Benouahmane M, Zhou D N, Wu F. Sep. Purif. Technol., 2022, 298: 121607.
[69]
Qi C D, Liu X T, Ma J, Lin C Y, Li X W, Zhang H J. Chemosphere, 2016, 151: 280.
[70]
Furman O S, Teel A L, Watts R J. Environ. Sci. Technol., 2010, 44(16): 6423.
[71]
Zhang Y, Yang W, Zhang K K, Kumaravel A, Zhang Y R. Environ. Sci. Technol., 2021, 55(17): 11961.
[72]
Yang J L, Zhu M S, Dionysiou D D. Water Res., 2021, 189: 116627.
[73]
Cao Y, Qiu W, Li J, Jiang J, Pang S Y. Sci. Total Environ., 2021, 765: 142762.
[74]
Liu J. Master Dessertation of Hunan University, 2017.
(刘军. 湖南大学硕士论文, 2017).
[75]
Xue M. Master Dessertation of Harbin Institute of Technology, 2019.
(薛茂. 哈尔滨工业大学硕士论文, 2019).
[76]
Benson S W. Chem. Rev., 1978, 78(1): 23.
[77]
Xia X H, Zhu F Y, Li J J, Yang H Z, Wei L L, Li Q Y, Jiang J Q, Zhang G S, Zhao Q L. Front. Chem., 2020, 8: 592056.
[78]
Liu S Y, Lai C, Li B S, Liu X G, Zhou X R, Zhang C, Qin L, Li L, Zhang M M, Yi H, Fu Y K, Yan H C, Chen L. Chem. Eng. J., 2022, 427: 131655.
[79]
Chen X, Oh W D, Lim T T. Chem. Eng. J., 2018, 354: 941.
[80]
Yu J F, Feng H P, Tang L, Pang Y, Zeng G M, Lu Y, Dong H R, Wang J J, Liu Y N, Feng C Y, Wang J J, Peng B, Ye S J. Prog. Mater. Sci., 2020, 111: 100654.
[81]
Ahn Y Y, Bae H, Kim H I, Kim S H, Kim J H, Lee S G, Lee J. Appl. Catal. B Environ., 2019, 241: 561.
[82]
Cheng X, Guo H G, Zhang Y L, Wu X, Liu Y. Water Res., 2017, 113: 80.
[83]
Ge D D, Dong Y T, Zhang W R, Yuan H P, Zhu N W. Sci. Total Environ., 2020, 733: 139146.
[84]
Zhou X, Wang Q L, Jiang G M, Liu P, Yuan Z G. Bioresour. Technol., 2015, 185: 416.
[85]
Wei L L, Xia X H, Zhu F Y, Li Q Y, Xue M, Li J J, Sun B, Jiang J Q, Zhao Q L. Water Res., 2020, 181: 115903.
[86]
Fan X Y, Wang Y L, Zhang D X, Guo Y J, Gao S H, Li E R, Zheng H L. J. Environ. Sci., 2020, 91: 73.
[87]
Liu J, Yang Q, Wang D B, Li X M, Zhong Y, Li X, Deng Y C, Wang L Q, Yi K X, Zeng G M. Bioresour. Technol., 2016, 206: 134.
[88]
Zhou X, Jin W B, Chen H Y, Chen C, Han S F, Tu R J, Wei W, Gao S H, Xie G J, Wang Q L. Water Sci. Technol., 2017, 76(9): 2427.
[89]
Li Y F, Pan L Y, Zhu Y Q, Yu Y Y, Wang D B, Yang G J, Yuan X Z, Liu X R, Li H L, Zhang J. Water Res., 2019, 163: 114912.
[90]
Ge D D, Zhu Y D, Li G B, Yuan H P, Zhu N W. J. Environ. Manag., 2021, 296: 113204.
[91]
Xiao Y F, Lu Y, Zheng G Y, Zhou L X. Environ. Technol., 2021, 42(16): 2573.
[92]
Song K, Zhou X, Liu Y Q, Xie G J, Wang D B, Zhang T T, Liu C S, Liu P, Zhou B B, Wang Q L. Chem. Eng. J., 2016, 295: 436.
[93]
Shi Y F, Yang J K, Mao W, Li Y L, Xu X, Zhang H, Yu W B, Li Y, Yang C Z. Desalin. Water Treat., 2015, 53(10): 2655.
[94]
Zhen G Y, Lu X Q, Niu J, Su L H, Chai X L, Zhao Y C, Li Y Y, Song Y, Niu D J. Chem. Eng. J., 2013, 233: 274.
[95]
Guo J Y, Gao Q F, Chen Y H, He Q L, Zhou H B, Liu J B, Zou C W, Chen W J. J. Environ. Manag., 2021, 288: 112476.
[96]
Tan Y J, Zhang R L, Lu X Q, Niu C X, Zhen G Y, Kumar G, Zhao Y C. J. Environ. Manag., 2021, 298: 113429.
[97]
Zhen G Y, Lu X Q, Li Y Y, Zhao Y C, Wang B Y, Song Y, Chai X L, Niu D J, Cao X Y. Bioresour. Technol., 2012, 119: 7.
[98]
Ni B J, Yan X F, Sun J, Chen X M, Peng L, Wei W, Wang D B, Mao S, Dai X H, Wang Q L. Chemosphere, 2019, 232: 45.
[99]
Li Y F, Yuan X Z, Wang D B, Wang H, Wu Z B, Jiang L B, Mo D, Yang G J, Guan R P, Zeng G M. Bioresour. Technol., 2018, 262: 294.
[100]
Zhen G Y, Lu X Q, Zhao Y C, Chai X L, Niu D J. Bioresour. Technol., 2012, 116: 259.
[101]
Hu L L, Liao Y, He C, Pan W Q, Liu S K, Yang Y C, Li S Z, Sun L P. Water Sci. Technol., 2015, 72(2): 245.
[102]
Zhou X, Jin W B, Wang L, Ding W Q, Chen C, Xu X J, Tu R J, Han S F, Feng X C, Lee D J. Korean J. Chem. Eng., 2020, 37(9): 1498.
[103]
Zhen G Y, Lu X Q, Su L H, Kobayashi T, Kumar G, Zhou T, Xu K Q, Li Y Y, Zhu X F, Zhao Y C. Water Res., 2018, 134: 101.
[104]
Zhen G Y, Wang J H, Lu X Q, Su L H, Zhu X F, Zhou T, Zhao Y C. Chemosphere, 2019, 221: 141.
[105]
Ye J, Lai Y, Wang C, Jianxiong Zeng R, Liu C G, Lin H, Zhou S G, He Z. Chem. Eng. J., 2022, 450: 138199.
[106]
Wang J Q, Yang M, Liu R P, Hu C Z, Liu H J, Qu J H. Water Res., 2019, 160: 454.
[107]
Liu C G, Chen X E, Cai H T. Chem. Eng. J., 2020, 400: 125954.
[108]
Yuan L H, Liu H X, Lu Y J, Lu Y, Wang D B. Chemosphere, 2022, 303: 135104.
[109]
Xiao J M, Ge D D, Yuan H P, Zhu N W. J. Environ. Chem. Eng., 2020, 8(3): 103785.
[110]
Li X D, Wu B, Zhang Q, Xu D P, Liu Y Q, Ma F J, Gu Q B, Li F S. Chem. Eng. J., 2019, 378: 122142.
[111]
Shi Y F, Yang J K, Yu W B, Zhang S N, Liang S, Song J, Xu Q, Ye N, He S, Yang C Z, Hu J P. Chem. Eng. J., 2015, 270: 572.
[112]
Xiong Q, Zhou M, Liu M J, Jiang S J, Hou H B. Chemosphere, 2018, 208: 93.
[113]
Qi Y, Thapa K B, Hoadley A F A. Chem. Eng. J., 2011, 171(2): 373.
[114]
Abdel-Aal E A, Rashad M M, El-Shall H. Cryst. Res. Technol., 2004, 39(4): 313.
[115]
Jin B, Wilén B M, Lant P. Chem. Eng. J., 2004, 98(1/2): 115.
[116]
Fang W, Zhang X D, Spanjers H, Zhang T. ACS Sustainable Chem. Eng., 2021, 9(30): 10073.
[117]
Yen C H, Chen K F, Kao C M, Liang S H, Chen T Y. J. Hazard. Mater., 2011, 186(2/3): 2097.
[118]
Wacławek S, Lutze H V, Grübel K, Padil V V T, Černík M, Dionysiou D D. Chem. Eng. J., 2017, 330: 44.
[119]
Ruan S Y, Deng J, Cai A H, Chen S N, Cheng Y Q, Li J, Li Q S, Li X Y. J. Environ. Manag., 2021, 281: 111899.
[120]
Guo J Y, Gao Q F, Jiang S L. Chemosphere, 2020, 252: 126542.
[121]
Kim M S, Lee K M, Kim H E, Lee H J, Lee C, Lee C H. Environ. Sci. Technol., 2016, 50(13): 7106.
[122]
Li P P, Yu Y, Zhu L X, Zhou Z H, Zhang W J, Wu P, Yu R. Water Sci. Technol., 2022, 85(3): 851.
[123]
Zhen G Y, Lu X Q, Wang B Y, Zhao Y C, Chai X L, Niu D J, Zhao A H, Li Y Y, Song Y, Cao X Y. Bioresour. Technol., 2012, 124: 29.
[124]
Liu C G, Wu B, Chen X E, Xie S C. Chem. Pap., 2017, 71(12): 2343.
[125]
Oncu N B, Mercan N, Balcioglu I A. Chem. Eng. J., 2015, 259: 972.
[126]
Huang Z C, Liu C G, Zhu X J, Xiang G Q, Zeng C H, Zhong Y Q. Chem. Pap., 2020, 74(2): 641.
[127]
Wacławek S, Grübel K, Dennis P, Vinod V T P, Černík M. Chem. Eng. J., 2016, 291: 192.
[128]
Yu Y, Li P, Zhu B, Liu Y, Yu R, Ge S. Environ. Sci. Pollut. Res., 2022.
[129]
Li H X, Wang Y L, Zheng H L. Water Res., 2018, 129: 83.
[130]
Yang M, Hasaer B, Bai Y H, Liu R P, Hu C Z, Qu J H. Chem. Eng. J., 2020, 391: 123603.
[131]
Hu S G, Hu J P, Sun Y F, Zhu Q, Wu L S, Liu B C, Xiao K K, Liang S, Yang J K, Hou H J. J. Hazard. Mater., 2021, 405: 124072.
[132]
Sha L, Wu Z X, Ling Z C, Liu X X, Yu X Y, Zhang S T. Chemosphere, 2022, 292: 133416.
[133]
Wang G J, Ge D D, Bai L, Dong Y T, Bian C, Xu J J, Zhu N W, Yuan H P. J. Environ. Manag., 2021, 297: 113342.
[134]
Zhen G Y, Lu X Q, Li Y Y, Zhao Y C. Bioresour. Technol., 2013, 136: 654.
[135]
Guo S D, Huang Y X, Zhou L, Huang X H. Water Sci. Technol., 2021, 84(2): 458.
[136]
Li Y F, Yuan X Z, Wu Z B, Wang H, Xiao Z H, Wu Y, Chen X H, Zeng G M. Chem. Eng. J., 2016, 303: 636.
[137]
Luo H W, Zeng Y F, He D Q, Pan X L. Chem. Eng. J., 2021, 407: 127191.
[138]
Liang J L, Zhou Y. Water Res., 2022, 218: 118499.
[139]
Zhang Y P, Li T T, Tian J Y, Zhang H C, Li F, Pei J H. J. Environ. Sci., 2022, 113: 152.
[140]
Liu C G, Wu B, Chen X E. Chem. Eng. J., 2020, 392: 124850.
[141]
Olabi A, Yildiz S. Environ. Sci. Pollut. Res., 2021, 28(37): 52565.
[142]
Tokumura M, Katoh H, Katoh T, Znad H T, Kawase Y. J. Hazard. Mater., 2009, 162(2/3): 1390.
[143]
Appels L, Houtmeyers S, Degrève J, Van Impe J, Dewil R. Bioresour. Technol., 2013, 128: 598.
[144]
Lai X J, Ning X A, Chen J Y, Li Y, Zhang Y P, Yuan Y Q. J. Hazard. Mater., 2020, 398: 122826.
[145]
Bai L, Wang G J, Ge D D, Dong Y T, Wang H, Wang Y H, Zhu N W, Yuan H P. Sci. Total Environ., 2022, 807: 151025.
[146]
Kou L D, Wang J, Zhao L, Jiang K, Xu X X. Chem. Eng. J., 2021, 411: 128459.
[147]
Xiao K K, Abbt-Braun G, Borowska E, Thomagkini X, Horn H. ACS ES&T Eng., 2022, 2(5): 863.
[148]
Amir S, Hafidi M, Merlina G, Hamdi H, Revel J C. Chemosphere, 2005, 58(4): 449.
[149]
Hung C M, Chen C W, Huang C P, Sheu D S, Dong C D. Bioresour. Technol., 2022, 361: 127680.
[150]
Liang J, Xu X Y, Zhong Q J, Xu Z B, Zhao L, Qiu H, Cao X D. J. Hazard. Mater., 2020, 398: 122861.
[151]
Oncu N B, Balcioglu I A. Bioresour. Technol., 2013, 146: 126.
[152]
Wei J, Liu Y T, Zhu Y H, Li J. Chemosphere, 2020, 247: 125854.
[153]
Shen M X, Huang Z J, Luo X W, Ma Y J, Chen C Y, Chen X, Cui L H. Chem. Eng. J., 2020, 396: 125238.
[154]
Guo Y Q, Guo Y L, Gong H, Fang N, Tan Y Q, Zhou W Q, Huang J L, Dai L L, Dai X H. Sci. Total Environ., 2021, 801: 149609.
[155]
Chen Y D, Wang R P, Duan X G, Wang S B, Ren N Q, Ho S H. Water Res., 2020, 187: 116390.
[156]
Sang W J, Xu X Y, Zhan C, Lu W, Jia D N, Wang C, Zhang Q, Gan F M, Li M. J. Water Process. Eng., 2022, 49: 103075.
[157]
Guo J Y, Zhou Y L. Chemosphere, 2020, 238: 124628.
[158]
Zhang Y X, Liu H L, Dai X H, Wang J, Shen Y P, Wang P. Sci. Total Environ., 2020, 724: 138349.
[159]
Liu C. Chem. Eng. J., 2019, 359: 217.
[160]
Li N. Master Dessertation of Huazhong University of Science and Technology, 2019.
(李娜. 华中科技大学硕士论文, 2019).
[161]
Li Y F, Yang F, Miao S Z, Wang D B, Li Z J, Yuan X Z, Yuan L H, Liu Q. Chem. Eng. J., 2021, 405: 126847.
[162]
Hu S G, Hu J P, Liu B C, Wang D L, Wu L S, Xiao K K, Liang S, Hou H J, Yang J K. Water Res., 2018, 145: 162.
[163]
Li E R, Wang Y L, Zhang D X, Fan X Y, Han Z B, Yu F L. Water Res., 2021, 201: 117352.

Funding

Open Fund of Key Laboratory of Green Technology in Ecological Industry of Fujian Province(WYKF-EIGT2021-3)
PDF(10027 KB)

Accesses

Citation

Detail

Sections
Recommended

/