Ball-Milled Click Chemistry: A Solvent-Free Green Chemistry

Xinqi Guan, Yuan Sang, Hailing Liu

Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 401-415.

PDF(5327 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5327 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 401-415. DOI: 10.7536/PC230711
Review

Ball-Milled Click Chemistry: A Solvent-Free Green Chemistry

Author information +
History +

Abstract

Click chemistry won the Noble Prize in 2022 due to easy synthesis, high selectivity, single product, and no toxic side product. Click chemistry was originally designed as green chemistry to work in aqueous solutions or environmentally friendly organic solvents. However, due to the poor solubility of reactants, polar and toxic solvents are usually required to use. The solvent used violates the concept of green chemistry, as well as increases the cost. These issues hinder click chemistry to be a state-of-art green chemistry. One of the solutions to optimize click chemistry is to avoid using any solvent. Herein, ball-milled mechanochemistry does not limit reactants’ solubility and could avoid solvent use. Ball-milled mechanochemistry is a new kind of chemical reaction that is conducted in a ball mill, is induced by mechanical force, and needs no solvent or a minimal amount of solvent. As a new way of organic synthesis, ball-milled mechanochemistry could easily achieve the low-energy carbon-heteroatom bonds, which constitute the linkages in click chemistry. Therefore, it could integrate with click chemistry and achieves ball-milled click chemistry. In comparison to traditional solution click chemistry, ball-milled click chemistry avoids solvent use. Moreover, it is even superior in the ways that the reaction time is shortened, the reaction temperature is lowered, and the catalyst used is simplified. In this review, ball-milled click chemistry examples are reported as much as the authors can find, including CuAAc, Diels-Alder, amine and isothiocyanate reactions, amine thiol reactions, and nitroxide radical coupling reactions. To provide readers with a better ball-milled click chemistry manual, this paper also contains ball mill machine choice guidance, liquid-assisted grinding choice guidance, and factors impacting ball-milled click chemistry conversion, including catalyst choice, additive choice, ball choice, stoichiometry, and milling time.

Contents

1 Introduction

1.1 Ball mill machines

1.2 Liquid/solid assisted grinding

2 Ball-milled click chemistry

2.1 Ball-milled CuAAc

2.2 Ball-milled Diels-Alder

2.3 Ball-milled amine and isothiocyanate reactions

2.4 Ball-milled amine thiol reactions

2.5 Ball-milled nitroxide radical coupling reactions

3 Factors impacting ball-milled click chemistry

3.1 Catalysts

3.2 Milling balls

3.3 Additive

3.4 Stoichiometry

3.5 Reaction time

4 Conclusion and outlook

Key words

ball mill / click chemistry / mechanochemistry / CuAAc / Diels-Alder / amine and isothiocyanate reaction / amine thiol reaction / nitroxide radical coupling reaction

Cite this article

Download Citations
Xinqi Guan , Yuan Sang , Hailing Liu. Ball-Milled Click Chemistry: A Solvent-Free Green Chemistry[J]. Progress in Chemistry. 2024, 36(3): 401-415 https://doi.org/10.7536/PC230711

References

[1]
Friščić T, Mottillo C, Titi H M. Angew. Chem., 2020, 132(3): 1030.
[2]
Gomollón-Bel F. Chem. Int., 2019, 41(2): 12.
[3]
Takacs L. Chem. Soc. Rev., 2013, 42(18): 7649.
[4]
Gu W, Li Z Q, Zhu S M, Zhang D. Acta. Chim. Sinica, 2008, (09): 1097.
(谷威, 李志强, 朱申敏, 张荻. 化学学报, 2008, (09): 1097.
[5]
Zhang X C, Cai X L, Zhou L, Qiao Y B, Wu C, Zhang S, Zhu W. Mater. Rev., 2018, 32(15): 2653.
(张修超, 蔡晓兰, 周蕾, 乔颖博, 吴灿, 张爽, 朱伟. 材料导报, 2018, 32(15): 2653.)
[6]
Zhang B J, Lin S F, Dai L Y, Liu Z J. Mater. Rev., 2014, 28(S1): 403.
(张宝剑, 林少芬, 戴乐阳, 刘志杰. 材料导报, 2014, 28(S1): 403.)
[7]
Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado J M, Delogu F, Dutková E, Gaffet E, Gotor F J, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K. Chem. Soc. Rev., 2013, 42(18): 7571.
[8]
James S L, Adams C J, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris K D M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen A G, Parkin I P, Shearouse W C, Steed J W, Waddell D C. Chem. Soc. Rev., 2012, 41(1): 413.
[9]
Friščić T, Fábián L. CrystEngComm, 2009, 11(5): 743.
[10]
Burmeister C F, Kwade A. Chem. Soc. Rev., 2013, 42(18): 7660.
[11]
Shi Y X, Xu K, Clegg J K, Ganguly R, Hirao H, Friščić T, García F. Angew. Chem. Int. Ed., 2016, 55(41): 12736.
[12]
Grätz S, Borchardt L. RSC Adv., 2016, 6(69): 64799.
[13]
Walsh P J, Li H M, de Parrodi C A. Chem. Rev., 2007, 107(6): 2503.
[14]
Brown N, Alsudairy Z, Behera R, Akram F, Chen K C, Smith-Petty K, Motley B, Williams S, Huang W Y, Ingram C, Li X L. Green Chem., 2023, 25(16): 6287.
[15]
Hou D F, Li M L, Li P Y, Zhou L, Zhang K, Liu Z Y, Yang W, Yang M B. ACS Sustainable Chem. Eng., 2023, 11(20): 7655.
[16]
Sheldon R A. Green Chem., 2005, 7(5): 267.
[17]
Buono P, Duval A, Avérous L, Habibi Y. ChemSusChem, 2018, 11(15): 2472.
[18]
Moses J E, Moorhouse A D. Chem. Soc. Rev., 2007, 36(8): 1249.
[19]
Xi W, Scott T F, Kloxin C J, Bowman C N. Adv. Funct. Mater., 2014, 24: 2572.
[20]
Hazra P P, Mondal B, Das D, Majhi P, Pradhan U, Mallick S, Shukla A K, Das R K, Roy U K. Tetrahedron, 2023, 139: 133442.
[21]
Pickhardt W, Grätz S, Borchardt L. Chem., 2020, 26(57): 12903.
[22]
Androsov A, Nerger L, Schnur R, Schröter J, Albertella A, Rummel R, Savcenko R, Bosch W, Skachko S, Danilov S. J. Geod., 2019, 93(2): 141.
[23]
Krusenbaum A, Grätz S, Bimmermann S, Hutsch S, Borchardt L. RSC Adv., 2020, 10(43): 25509.
[24]
Grätz S, Zink S, Kraffczyk H, Rose M, Borchardt L. Beilstein J. Org. Chem., 2019, 15: 1154.
[25]
Hernández J G. Beilstein J. Org. Chem., 2017, 13: 1463.
[26]
Štrukil V, Sajko I. Chem. Commun., 2017, 53(65): 9101.
[27]
Friščić T, Halasz I, Beldon P J, Belenguer A M, Adams F, Kimber S A J, Honkimäki V, Dinnebier R E. Nat. Chem., 2013, 5: 66.
[28]
Štrukil V, Gracin D, Magdysyuk O V, Dinnebier R E, Friščić T. Angew. Chem. Int. Ed., 2015, 54(29): 8440.
[29]
Gracin D, Štrukil V, Friščić T, Halasz I, Užarević K. Angew. Chem. Int. Ed., 2014, 53(24): 6193.
[30]
Tireli M, Juribašić Kulcsár M, Cindro N, Gracin D, Biliškov N, Borovina M, Ćurić M, Halasz I, Užarević K. Chem. Commun., 2015, 51(38): 8058.
[31]
Halasz I, Puškarić A, Kimber S A J, Beldon P J, Belenguer A M, Adams F, Honkimäki V, Dinnebier R E, Patel B, Jones W, Štrukil V, Friščić T. Angew. Chem. Int. Ed., 2013, 52(44): 11538.
[32]
Halasz I, Kimber S A J, Beldon P J, Belenguer A M, Adams F, Honkimäki V, Nightingale R C, Dinnebier R E, Friščić T. Nat. Protoc., 2013, 8(9): 1718.
[33]
Batzdorf L, Fischer F, Wilke M, Wenzel K J, Emmerling F. Angew. Chem., 2015, 127(6): 1819.
[34]
Schiffmann J G, Emmerling F, Martins I C B,Van Wüllen L. Solid State Nucl. Magn. Reson., 2020, 109: 101687.
[35]
Xu W W. Masteral Dissertation of Kunming University of Science and Technology, 2017.
(许维维. 昆明理工大学硕士论文, 2017.)
[36]
Peters K, Cremer W. Angew. Chem., 1934, 47(32): 576.
[37]
Crawford D E, Casaban J. Adv. Mater., 2016, 28(27): 5747.
[38]
Friščić T, Childs S L, Rizvi S A A, Jones W. CrystEngComm, 2009, 11(3): 418.
[39]
Schmidt R, Thorwirth R, Szuppa T, Stolle A, Ondruschka B, Hopf H. Chem., 2011, 17(29): 8129.
[40]
Shan N, Toda F, Jones W. Chem. Commun., 2002(20): 2372.
[41]
Hasa D, Marosa M, Bučar D K, Corpinot M K, Amin D, Patel B, Jones W. Cryst. Growth Des., 2020, 20(2): 1119.
[42]
Lyons T W, Sanford M S. Chem. Rev., 2010, 110(2): 1147.
[43]
Davies H M L, Du Bois J, Yu J Q. Chem. Soc. Rev., 2011, 40(4): 1855.
[44]
Kumar N, Biswas K. Rev. Sci. Instrum., 2015, 86: 083903.
[45]
Do J L, Mottillo C, Tan D, Štrukil V, Friščić T. J. Am. Chem. Soc., 2015, 137(7): 2476.
[46]
Hutchings B P, Crawford D E, Gao L, Hu P J, James S L. Angew. Chem., 2017, 129(48): 15454.
[47]
Egbert J D, Cazin C S J, Nolan S P. Catal. Sci. Technol., 2013, 3(4): 912.
[48]
Lin J C Y, Huang R T W, Lee C S, Bhattacharyya A, Hwang W S, Lin I J B. Chem. Rev., 2009, 109(8): 3561.
[49]
Lazreg F, Nahra F, Cazin C S J. Coord. Chem. Rev., 2015, 293/294: 48.
[50]
Díez-González S, Nolan S. Synlett, 2007, 2007(14): 2158.
[51]
Proutiere F, Schoenebeck F. Angew. Chem. Int. Ed., 2011, 50(35): 8192.
[52]
Howard J L, Sagatov Y, Repusseau L, Schotten C, Browne D L. Green Chem., 2017, 19(12): 2798.
[53]
Dong R, Zhang Y L, Xu H Z, Bao L Y, Ma S H, Wang X G, Yu Q L, Cai M R, Zhou F, Liu W M. Chem. Eng. J., 2023, 454: 139772.
[54]
Biewend M, Michael P, Binder W H. Soft Matter, 2020, 16(5): 1137.
[55]
Thorwirth R, Stolle A, Ondruschka B, Wild A, Schubert U S. Chem. Commun., 2011, 47(15): 4370.
[56]
Rinaldi L, Martina K, Baricco F, Rotolo L, Cravotto G. Molecules, 2015, 20(2): 2837.
[57]
Tireli M, Maračić S, Lukin S, Kulcsár M J, Žilić D, Cetina M, Halasz I, Raić-Malić S, Užarević K. Beilstein J. Org. Chem., 2017, 13: 2352.
[58]
Cook T L, Walker J A, Mack J. Green Chem., 2013, 15(3): 617.
[59]
Mukherjee N, Ahammed S, Bhadra S, Ranu B C. Green Chem., 2013, 15(2): 389.
[60]
Sahu A, Agrawal R K, Pandey R. Bioorg. Chem., 2019, 88: 102939.
[61]
Sampath S, Vadivelu M, Ravindran R, Perumal P T, Velkannan V, Karthikeyan K. ChemistrySelect, 2020, 5(7): 2130.
[62]
García-Oliva C, Merchán A, Perona A, Hoyos P, Rumbero Á, Hernáiz M J. New J. Chem., 2022, 46(14): 6389.
[63]
Mamedov E G, Klabunovskii E I. Russ. J. Org. Chem., 2008, 44(8): 1097.
[64]
Shao C W, Wang X Y, Zhang Q, Luo S, Zhao J C, Hu Y F. J. Org. Chem., 2011, 76(16): 6832.
[65]
Jędrzejowski D, Ryndak M, Zakrzewski J J, Hodorowicz M, Chorazy S, Matoga D. ACS Appl. Mater. Interfaces, 2023, 15(21): 25661.
[66]
Torkaman N F, Kley M, Bremser W, Wilhelm R. RSC Adv., 2022, 12(27): 17249.
[67]
Zhang Z, Peng Z W, Hao M F, Gao J G. Synlett, 2010, 2010(19): 2895.
[68]
Tan Y J, Zhang Z, Wang F J, Wu H H, Li Q H. RSC Adv., 2014, 4(67): 35635.
[69]
Hsu C C, Chen N C, Lai C C, Liu Y H, Peng S M, Chiu S H. Angew. Chem. Int. Ed., 2008, 47(39): 7475.
[70]
Yu W G, Gao X F, Yuan Z C, Liu H H, Wang X C, Zhang X X. RSC Adv., 2022, 12(28): 17990.
[71]
Seo J M, Jeon I Y, Baek J B. Chem. Sci., 2013, 4(11): 4273.
[72]
Xu J F, Zhao X M, Liu F X, Jin L, Chen G H. New J. Chem., 2020, 44(4): 1236.
[73]
Van Daele I, Munier-Lehmann H, Froeyen M, Balzarini J,Van Calenbergh S. J. Med. Chem., 2007, 50(22): 5281.
[74]
Bukvić Krajačić M, Novak P, Dumić M, Cindrić M,Paljetak H Č, Kujundžić N. Eur. J. Med. Chem., 2009, 44(9): 3459.
[75]
Bukvić Krajačić M, Perić M, Smith K S,Ivezić Schönfeld Z, Žiher D, Fajdetić A, Kujundžić N, Schönfeld W, Landek G, Padovan J, Jelić D, Ager A, Milhous W K, Ellis W, Spaventi R, Ohrt C. J. Med. Chem., 2011, 54(10): 3595.
[76]
Mahajan A, Yeh S, Nell M, van Rensburg C E J, Chibale K. Bioorg. Med. Chem. Lett., 2007, 17(20): 5683.
[77]
Bloom J D, Dushin R G, Curran K J, Donahue F, Norton E B, Terefenko E, Jones T R, Ross A A, Feld B, Lang S A, DiGrandi M J. Bioorg. Med. Chem. Lett., 2004, 14. 3401.
[78]
Küçükgüzel İ, Tatar E, Küçükgüzel Ş G, Rollas S, De Clercq E. Eur. J. Med. Chem., 2008, 43(2): 381.
[79]
Hallur G, Jimeno A, Dalrymple S, Zhu T, Jung M K, Hidalgo M, Isaacs J T, Sukumar S, Hamel E, Khan S R. J. Med. Chem., 2006, 49(7): 2357.
[80]
Sharma S K, Wu Y, Steinbergs N, Crowley M L, Hanson A S, Casero R A, Woster P M. J. Med. Chem., 2010, 53(14): 5197.
[81]
Sohtome Y, Takemura N, Takagi R, Hashimoto Y, Nagasawa K. Tetrahedron, 2008, 64(40): 9423.
[82]
Kotke M, Schreiner P R. Tetrahedron, 2006, 62(2/3): 434.
[83]
Herrera R P, Ricci A, Dessole G. Synlett, 2004(13): 2374.
[84]
Herrera R P, Sgarzani V, Bernardi L, Ricci A. Angew. Chem., 2005, 117(40): 6734.
[85]
Fleming E M, McCabe T, Connon S J. Tetrahedron Lett., 2006, 47(39): 7037.
[86]
Liu X G, Jiang J J, Shi M. Tetrahedron Asymmetry, 2007, 18(23): 2773.
[87]
Maher D J, Connon S J. Tetrahedron Lett., 2004, 45(6): 1301.
[88]
Sohtome Y, Tanatani A, Hashimoto Y, Nagasawa K. Tetrahedron Lett., 2004, 45(29): 5589.
[89]
Mack J, Shumba M. Green Chem., 2007, 9(4): 328.
[90]
Wang C G, Zhou Z H, Tang C C. Org. Lett., 2008, 10(9): 1707.
[91]
Kaupp G, Schmeyers J, Boy J. Tetrahedron, 2000, 56(36): 6899.
[92]
Li J P, Wang Y L, Wang H, Luo Q F, Wang X Y. Synth. Commun., 2001, 31(5): 781.
[93]
Štrukil V, Igrc M D, Eckert-Maksić M, Friščić T. Chem., 2012, 18(27): 8464.
[94]
Štrukil V, Igrc M D, Fábián L, Eckert-Maksić M, Childs S L, Reid D G, Duer M J, Halasz I, Mottillo C, Friščić T. Green Chem., 2012, 14(9): 2462.
[95]
Wu T H, Liang T Y, Hu W, Du M Q, Zhang S J, Zhang Y F, Anslyn E V, Sun X L. ACS Macro Lett., 2021, 10(9): 1125.
[96]
Kulis J, Bell C A, Micallef A S, Jia Z F, Monteiro M J. Macromolecules, 2009, 42(21): 8218.
[97]
Candan O A, Kopan D, Durmaz H, Hizal G, Tunca U. Eur. Polym. J., 2013, 49(7): 1796.
[98]
Kubota K, Toyoshima N, Miura D, Jiang J L, Maeda S, Jin M, Ito H. Angew. Chem., 2021, 133(29): 15793.
[99]
Hein J E, Fokin V V. Chem. Soc. Rev., 2010, 39(4): 1302.
[100]
Chassaing S, Bénéteau V, Pale P. Catal. Sci. Technol., 2016, 6(4): 923.

Funding

National Natural Science Foundation of China(52103005)
Liaoning Revitalization Talents Program(XLYC2203072)
startup funding of Liaoning Petrochemical University(2021XJJL-003)
PDF(5327 KB)

Accesses

Citation

Detail

Sections
Recommended

/