Covalent Organic Frameworks as Cathode Materials for Metal Ion Batteries

Wenbo Zhou, Xiaoman Li, Min Luo

Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 430-447.

PDF(27780 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(27780 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 430-447. DOI: 10.7536/PC230720
Review

Covalent Organic Frameworks as Cathode Materials for Metal Ion Batteries

Author information +
History +

Abstract

Covalent organic frameworks (COFs) are porous organic materials with periodic two-dimensional or three-dimensional network structures consisting of two or more organic molecules connected by covalent bonds. COFs have attracted considerable interest in energy storage due to their beneficial properties, including low skeletal density, high surface area, high porosity, structural designability and functional modifiability. COFs offer unique advantages as positive electrode materials for metal ion batteries due to their rich redox active sites and open framework structure. However, their application in energy storage is limited by challenges such as poor conductivity, low energy density, limited number of available active sites, and blockage of ion transport channels. This article provides a comprehensive review of recent research on COFs as positive electrode materials for metal ion batteries, discussing their types, design strategies, and synthesis methods. Additionally, it presents an overview of the electrochemical energy storage mechanisms from the perspective of different active groups, and the applications of COFs in various metal ion batteries. Finally, it highlights the prospects and challenges of using COFs in energy storage.

Contents

1 Introduction

2 Types of COFs

2.1 B-C containing

2.2 C-N containing

2.3 C=N containing

2.4 C=C containing

3 Synthesis method of COFs

3.1 Solvothermal synthesis

3.2 Ionic thermal synthesis

3.3 Microwave-assisted synthesis

3.4 Mechanochemical synthesis

3.5 Sonochemical synthesis

4 Microstructure design strategy for COFs

4.1 Introduction of redox active sites

4.2 Crystallinity adjustment

4.3 Interlayer stripping strategy

5 Application of COFs in different metal ion batteries

5.1 Lithium-ion batteries

5.2 Sodium-ion batteries

5.3 Potassium-ion batteries

5.4 Aqueous zinc batteries

6 Conclusion and prospect

Key words

covalent organic frameworks / energy storage / redox active sites / metal ion batteries

Cite this article

Download Citations
Wenbo Zhou , Xiaoman Li , Min Luo. Covalent Organic Frameworks as Cathode Materials for Metal Ion Batteries[J]. Progress in Chemistry. 2024, 36(3): 430-447 https://doi.org/10.7536/PC230720

References

[1]
Jafta C J. Curr. Opin. Electrochem., 2022, 36: 101130.
[2]
Nayak P K, Yang L T, Brehm W, Adelhelm P. Angew. Chem. Int. Ed., 2018, 57(1): 102.
[3]
Fu N, Xu Y T, Zhang S, Deng Q, Liu J, Zhou C J, Wu X W, Guo Y G, Zeng X X. J. Energy Chem., 2022, 67: 563.
[4]
Li X M, Wang X Y, Ma L T, Huang W. Adv. Energy Mater., 2022, 12(37): 2202068.
[5]
Kotal M, Jakhar S, Roy S, Sharma H K. J. Energy Storage, 2022, 47: 103534.
[6]
Yang Y J, Zhou J B, Wang L L, Jiao Z, Xiao M Y, Huang Q A, Liu M M, Shao Q S, Sun X L, Zhang J J. Nano Energy, 2022, 99: 107424.
[7]
Cheng N, Ren L, Xu X, Du Y, Dou S X. Mater. Today Phys., 2020, 15: 100289.
[8]
Shea J J, Luo C. ACS Appl. Mater. Interfaces, 2020, 12(5): 5361.
[9]
Kong L J, Zhong M, Shuang W, Xu Y H, Bu X H. Chem. Soc. Rev., 2020, 49(8): 2378.
[10]
Yang Y X, Zhang C H, Zhao G F, An Q, Mei Z Y, Sun Y J, Xu J, Wang X F, Guo H. Adv. Energy Mater., 2023, 2300725.
[11]
Zhang C H, Yang Y X, Sun Y J, Duan L Y, Mei Z Y, An Q, Jing Q, Zhao G F, Guo H. Sci. China Mater., 2023, 66(7): 2591.
[12]
Rivera-Lugo Y Y, Félix-Navarro R M, Trujillo-Navarrete B, Reynoso-Soto E A, Silva-Carrillo C, Cruz-Gutiérrez C A, Quiroga-González E, Calva-Yáñez J C. Fuel, 2021, 287: 119463.
[13]
Gao X, Wu H W, Li W J, Tian Y, Zhang Y, Wu H, Yang L, Zou G Q, Hou H S, Ji X B. Small, 2020, 16(5): 1905842.
[14]
Wang R Q, Chen T, Cao Y J, Wang N, Zhang J X. Ionics, 2021, 27(4): 1559.
[15]
Wu L, Huang S Z, Dong W D, Li Y, Wang Z H, Mohamed H S H, Li Y, Su B L. J. Colloid Interface Sci., 2021, 594: 531.
[16]
Soundharrajan V, Sambandam B, Kim S, Mathew V, Jo J, Kim S, Lee J, Islam S, Kim K, Sun Y K, Kim J. ACS Energy Lett., 2018, 3(8): 1998.
[17]
Zhou J, Shan L T, Wu Z X, Guo X, Fang G Z, Liang S Q. Chem. Commun., 2018, 54(35): 4457.
[18]
Tang H, Xiong F Y, Jiang Y L, Pei C Y, Tan S S, Yang W, Li M S, An Q Y, Mai L Q. Nano Energy, 2019, 58: 347.
[19]
Xue Y, Zheng L L, Wang J, Zhou J G, Yu F D, Zhou G J, Wang Z B. ACS Appl. Energy Mater., 2019, 2(4): 2982.
[20]
Yao H, Bao X L, Ye S D, Sheng S Q, Chen Q, Meng L L, Yang J. Mater. Lett., 2023, 341: 134232.
[21]
Qiao S Y, Dong S H, Yuan L L, Li T, Ma M, Wu Y F, Hu Y Z, Qu T, Chong S K. J. Alloys Compd., 2023, 950: 169903.
[22]
Song T Y, Yao W J, Kiadkhunthod P, Zheng Y P, Wu N Z, Zhou X L, Tunmee S, Sattayaporn S, Tang Y B. Angew. Chem. Int. Ed., 2020, 59(2): 740.
[23]
Du C Y, Zhang Z H, Li X L, Luo R J, Ma C, Bao J, Zeng J, Xu X, Wang F, Zhou Y N. Chem. Eng. J., 2023, 451: 138650.
[24]
Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhou J W, Feng X, Wang B. J. Am. Chem. Soc., 2017, 139(12): 4258.
[25]
Ma D X, Zhao H M, Cao F, Zhao H H, Li J X, Wang L, Liu K. Chem. Sci., 2022, 13(8): 2385.
[26]
Yang X Y, Gong L, Liu X L, Zhang P P, Li B W, Qi D, Wang K, He F, Jiang J Z. Angew. Chem. Int. Ed., 2022, 61: e202207043.
[27]
Yao L Y, Ma C, Sun L B, Zhang D L, Chen Y Z, Jin E Q, Song X W, Liang Z Q, Wang K X. J. Am. Chem. Soc., 2022, 144(51): 23534.
[28]
Shi R J, Liu L J, Lu Y, Wang C C, Li Y X, Li L, Yan Z H, Chen J. Nat. Commun., 2020, 11: 178.
[29]
Peng H J, Huang S H, Montes-García V, Pakulski D, Guo H P, Richard F, Zhuang X D, Samorì P, Ciesielski A. Angew. Chem. Int. Ed., 2023, 62(10): e202216136.
[30]
Cao Y, Wang M D, Wang H J, Han C Y, Pan F S, Sun J. Adv. Energy Mater., 2022, 12(20): 2200057.
[31]
Son E J, Kim J H, Kim K, Park C B. J. Mater. Chem. A, 2016, 4(29): 11179.
[32]
Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.
[33]
Sakaushi K, Hosono E, Nickerl G, Gemming T, Zhou H S, Kaskel S, Eckert J. Nat. Commun., 2013, 4: 1485.
[34]
Xu F, Jin S B, Zhong H, Wu D C, Yang X Q, Chen X, Wei H, Fu R W, Jiang D L. Sci. Rep., 2015, 5: 8225.
[35]
Khayum M A, Ghosh M, Vijayakumar V, Halder A, Nurhuda M, Kumar S, Addicoat M, Kurungot S, Banerjee R. Chem. Sci., 2019, 10(38): 8889.
[36]
Gu S, Wu S F, Cao L J, Li M C, Qin N, Zhu J, Wang Z Q, Li Y Z, Li Z Q, Chen J J, Lu Z G. J. Am. Chem. Soc., 2019, 141(24): 9623.
[37]
Fujii S, Marqués-González S, Shin J Y, Shinokubo H, Masuda T, Nishino T, Arasu N P, Vázquez H, Kiguchi M. Nat. Commun., 2017, 8: 15984.
[38]
Li H Y, Tang M, Wu Y C, Chen Y, Zhu S L, Wang B, Jiang C, Wang E J, Wang C L. J. Phys. Chem. Lett., 2018, 9(12): 3205.
[39]
Li N, Chang Z, Huang H L, Feng R, He W W, Zhong M, Madden D G, Zaworotko M J, Bu X H. Small, 2019, 15(22): 1970118.
[40]
Tao R, Yang T F, Wang Y, Zhang J M, Wu Z Y, Qiu L. Chem. Commun., 2023, 59(22): 3175.
[41]
Feng X, Ding X S, Jiang D L. Chem. Soc. Rev., 2012, 41(18): 6010.
[42]
Sun T, Xie J, Guo W, Li D S, Zhang Q C. Adv. Energy Mater., 2020, 10(19): 1904199.
[43]
Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 2016, 1(10): 16068.
[44]
Geng K Y, Arumugam V, Xu H J, Gao Y N, Jiang D L. Prog. Polym. Sci., 2020, 108: 101288.
[45]
Yusran Y, Fang Q R, Valtchev V. Adv. Mater., 2020, 32(44): 2002038.
[46]
El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, Côté A P, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.
[47]
Chen X D, Zhang H, Ci C G, Sun W W, Wang Y. ACS Nano, 2019, 13(3): 3600.
[48]
Wei S H, Wang J W, Li Y Z, Fang Z B, Wang L, Xu Y X. Nano Res., 2023, 16(5): 6753.
[49]
Tang J Y, Su C, Shao Z P. Small Meth., 2021, 5(12): 2100945.
[50]
Ma X H, Kang J S, Wu Y W, Pang C H, Li S H, Li J P, Xiong Y H, Luo J H, Wang M Y, Xu Z. Trac Trends Anal. Chem., 2022, 157: 116793.
[51]
DeBlase C R, Silberstein K E, Truong T T, Abruña H D, Dichtel W R. J. Am. Chem. Soc., 2013, 135(45): 16821.
[52]
Fang Q R, Zhuang Z B, Gu S, Kaspar R B, Zheng J, Wang J H, Qiu S L, Yan Y S. Nat. Commun., 2014, 5: 4503.
[53]
Zhang Y, Huang Z, Ruan B, Zhang X K, Jiang T, Ma N, Tsai F C. Macromol. Rapid Commun., 2020, 41(22): 2000402.
[54]
Lu Y X. Seventh Edition of Organic Chemistry. Beijing: People's Medical Publishing House, 2008, 06.
(吕以仙. 有机化学第七版. 北京: 人民卫生出版社, 2008, 06.)
[55]
Liao L F, Li M Y, Yin Y L, Chen J, Zhong Q T, Du R X, Liu S L, He Y M, Fu W J, Zeng F. ACS Omega, 2023, 8(5): 4527.
[56]
Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133(30): 11478.
[57]
Jin E Q, Geng K Y, Lee K H, Jiang W M, Li J, Jiang Q H, Irle S, Jiang D L. Angew. Chem. Int. Ed., 2020, 59(29): 12162.
[58]
Xu S Q, Wang G, Biswal B P, Addicoat M, Paasch S, Sheng W B, Zhuang X D, Brunner E, Heine T, Berger R, Feng X L. Angew. Chem. Int. Ed., 2019, 58(3): 849.
[59]
Zhang F L, Dong X Y, Wang Y X, Lang X J. Small, 2023, 19(38): 2302456.
[60]
Zhang C R, Cui W R, Yi S M, Niu C P, Liang R P, Qi J X, Chen X J, Jiang W, Liu X, Luo Q X, Qiu J D. Nat. Commun., 2022, 13: 7621.
[61]
Zhang C R, Qi J X, Cui W R, Chen X J, Liu X, Yi S M, Niu C P, Liang R P, Qiu J D. Sci. China Chem., 2023, 66(2): 562.
[62]
Abuzeid H R, EL-Mahdy A F M, Kuo S W. Microporous Mesoporous Mater., 2020, 300: 110151.
[63]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.
[64]
Bojdys M J, Jeromenok J, Thomas A, Antonietti M. Adv. Mater., 2010, 22(19): 2202.
[65]
Campbell N L, Clowes R, Ritchie L K, Cooper A I. Chem. Mater., 2009, 21(2): 204.
[66]
Martínez-Visus Í, Ulcuango M, Zornoza B. Chem. Eur. J., 2023, 29(15): e202203907.
[67]
Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(14): 5328.
[68]
Karak S, Kandambeth S, Biswal B P, Sasmal H S, Kumar S, Pachfule P, Banerjee R. J. Am. Chem. Soc., 2017, 139(5): 1856.
[69]
Zhao W, Yan P Y, Yang H F, Bahri M, James A M, Chen H M, Liu L J, Li B Y, Pang Z F, Clowes R, Browning N D, Ward J W, Wu Y, Cooper A I. Nat. Synth., 2022, 1(1): 87.
[70]
Yoo J, Cho S J, Jung G Y, Kim S H, Choi K H, Kim J H, Lee C K, Kwak S K, Lee S Y. Nano Lett., 2016, 16(5): 3292.
[71]
Kuhn P, Thomas A, Antonietti M. Macromolecules, 2009, 42(1): 319.
[72]
Maschita J, Banerjee T, Savasci G, Haase F, Ochsenfeld C, Lotsch B V. Angew. Chem. Int. Ed., 2020, 59(36): 15750.
[73]
Chen X D, Zhang H, Yan P, Liu B, Cao X H, Zhan C C, Wang Y W, Liu J H. RSC Adv., 2022, 12(18): 11484.
[74]
Das G, Benyettou F, Sharama S K, Prakasam T, Gándara F, de la Peña-O’Shea V A, Saleh N, Pasricha R, Jagannathan R, Olson M A, Trabolsi A. Chem. Sci., 2018, 9(44): 8382.
[75]
Zhao Y B, Guo L, Gándara F, Ma Y H, Liu Z, Zhu C H, Lyu H, Trickett C A, Kapustin E A, Terasaki O, Yaghi O M. J. Am. Chem. Soc., 2017, 139(37): 13166.
[76]
Yang H S, Du Y, Wan S, Trahan G D, Jin Y H, Zhang W. Chem. Sci., 2015, 6(7): 4049.
[77]
Shinde D B, Aiyappa H B, Bhadra M, Biswal B P, Wadge P, Kandambeth S, Garai B, Kundu T, Kurungot S, Banerjee R. J. Mater. Chem. A, 2016, 4(7): 2682.
[78]
Peng Y W, Xu G D, Hu Z G, Cheng Y D, Chi C L, Yuan D Q, Cheng H S, Zhao D. ACS Appl. Mater. Interfaces, 2016, 8(28): 18505.
[79]
Yang S T, Kim J, Cho H Y, Kim S, Ahn W S. RSC Adv., 2012, 2(27): 10179.
[80]
Cao Y Y, He Y J, Gang H Y, Wu B C, Yan L J, Wei D, Wang H Y. J. Power Sources, 2023, 560: 232710.
[81]
Liu X, Liu C F, Lai W Y, Huang W. Adv. Mater. Technol., 2020, 5(9): 2000154.
[82]
Zhang X F, Xiao Z Y, Liu X F, Mei P, Yang Y K. Renew. Sustain. Energy Rev., 2021, 147: 111247.
[83]
Zheng S B, Shi D J, Yan D, Wang Q R, Sun T J, Ma T, Li L, He D, Tao Z L, Chen J. Angew. Chem. Int. Ed., 2022, 61(12): e202117511.
[84]
Guo Z W, Ma Y Y, Dong X L, Huang J H, Wang Y G, Xia Y Y. Angew. Chem. Int. Ed., 2018, 130(36): 11911.
[85]
Yusran Y, Fang Q R, Qiu S L. Isr. J. Chem., 2018, 58(9/10): 971.
[86]
Nagai A, Guo Z Q, Feng X, Jin S B, Chen X, Ding X S, Jiang D L. Nat. Commun., 2011, 2: 536.
[87]
Li J H, Huang L L, Lv H, Wang J L, Wang G, Chen L, Liu Y Y, Guo W, Yu F, Gu T T. ACS Appl. Mater. Interfaces, 2022, 14(34): 38844.
[88]
Lei Z D, Yang Q S, Xu Y, Guo S Y, Sun W W, Liu H, Lv L P, Zhang Y, Wang Y. Nat. Commun., 2018, 9: 576.
[89]
Lin Z R, Lin L, Zhu J Q, Wu W L, Yang X P, Sun X Q. ACS Appl. Mater. Interfaces, 2022, 14(34): 38689.
[90]
Ma T Q, Kapustin E A, Yin S X, Liang L, Zhou Z Y, Niu J, Li L H, Wang Y Y, Su J, Li J, Wang X G, Wang W D, Wang W, Sun J L, Yaghi O M. Science, 2018, 361(6397): 48.
[91]
Yao Z F, Zheng Y Q, Dou J H, Lu Y, Ding Y F, Ding L, Wang J Y, Pei J. Adv. Mater., 2021, 33(10): 2170075.
[92]
Feng L, Wang K Y, Day G S, Ryder M R, Zhou H C. Chem. Rev., 2020, 120(23): 13087.
[93]
Yang J, Kang F Y, Wang X, Zhang Q C. Mater. Horiz., 2022, 9(1): 121.
[94]
Liu M Y, Jiang K, Ding X, Wang S L, Zhang C X, Liu J, Zhan Z, Cheng G, Li B Y, Chen H, Jin S B, Tan B E. Adv. Mater., 2019, 31(19): 1807865.
[95]
Vyas V S, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch B V. Nat. Commun., 2015, 6: 8508.
[96]
Thompson C M, Occhialini G, McCandless G T, Alahakoon S B, Cameron V, Nielsen S O, Smaldone R A. J. Am. Chem. Soc., 2017, 139(30): 10506.
[97]
Chen X D, Li Y S, Wang L, Xu Y, Nie A M, Li Q Q, Wu F, Sun W W, Zhang X, Vajtai R, Ajayan P M, Chen L, Wang Y. Adv. Mater., 2019, 31(29): 1901640.
[98]
Gong L, Yang X Y, Gao Y, Yang G X, Yu Z H, Fu X Z, Wang Y H, Qi D D, Bian Y Z, Wang K, Jiang J Z. J. Mater. Chem. A, 2022, 10(31): 16595.
[99]
Liu X L, Jin Y C, Wang H L, Yang X Y, Zhang P P, Wang K, Jiang J Z. Adv. Mater., 2022, 34(37): 2203605.
[100]
Jia C, Duan A, Liu C, Wang W Z, Gan S X, Qi Q Y, Li Y J, Huang X Y, Zhao X. Small, 2023, 19(24): 2300518.
[101]
Kushwaha R, Jain C, Shekhar P, Rase D, Illathvalappil R, Mekan D, Camellus A, Vinod C P, Vaidhyanathan R. Adv. Energy Mater., 2023, 13(34): 2301049.
[102]
Gui H D, Xu F. Mater. Lett., 2023, 346: 134549.
[103]
Wang W X, Kale V S, Cao Z, Lei Y, Kandambeth S, Zou G D, Zhu Y P, Abouhamad E, Shekhah O, Cavallo L, Eddaoudi M, Alshareef H N. Adv. Mater., 2021, 33(39): 2103617.
[104]
Shi J W, Tang W Y, Xiong B R, Gao F, Lu Q Y. Chem. Eng. J., 2023, 453: 139607.
[105]
Venkatesha A, Gomes R, Nair A S, Mukherjee S, Bagchi B, Bhattacharyya A J. ACS Sustainable Chem. Eng., 2022, 10(19): 6205.
[106]
Wu M M, Zhao Y, Zhao R Q, Zhu J, Liu J, Zhang Y M, Li C X, Ma Y F, Zhang H T, Chen Y S. Adv. Funct. Mater., 2022, 32(11): 2107703.
[107]
Saleem A, Majeed M K, Iqbal R, Hussain A, Naeem M S, Rauf S, Wang Y L, Javed M S, Shen J. Adv. Mater. Interfaces, 2022, 9(27): 2200800.
[108]
Xu X Y, Zhang S Q, Xu K, Chen H Z, Fan X L, Huang N. J. Am. Chem. Soc., 2023, 145(2): 1022.
[109]
Li S W, Liu Y Z, Dai L, Li S, Wang B, Xie J, Li P F. Energy Storage Mater., 2022, 48: 439.
[110]
Tong Z Q, Wang H, Kang T X, Wu Y, Guan Z Q, Zhang F, Tang Y B, Lee C S. J. Energy Chem., 2022, 75: 441.
[111]
Qiu T Y, Tang W S, Han X, Li Y, Chen Z W, Yao R Q, Li Y Q, Wang Y H, Li Y G, Tan H Q. Chem. Eng. J., 2023, 466: 143149.
[112]
Meng Z Y, Zhang Y, Dong M Q, Zhang Y, Cui F M, Loh T P, Jin Y H, Zhang W, Yang H S, Du Y. J. Mater. Chem. A, 2021, 9(17): 10661.
[113]
Liu Q, Xiao J, Chen, Yan W, Ma, Yi W, Lu, Hui M, Zhang, Bao Z, Yang. National Natural Science Foundation of China, 2023, 21975034.
[114]
Gao H, Neale A R, Zhu Q, Bahri M, Wang X, Yang H F, Xu Y J, Clowes R, Browning N D, Little M A, Hardwick L J, Cooper A I. J. Am. Chem. Soc., 2022, 144(21): 9434.
[115]
Zhao G F, Li H N, Gao Z H, Xu L F, Mei Z Y, Cai S, Liu T T, Yang X F, Guo H, Sun X L. Adv. Funct. Mater., 2021, 31(29): 2101019.
[116]
Gu S, Hao R, Chen J J, Chen X, Liu K, Hussain I, Liu G Y, Wang Z Q, Gan Q M, Guo H, Li M Q, Zhang K L, Lu Z G. Mater. Chem. Front., 2022, 6(17): 2545.
[117]
Luo D R, Zhang J, Zhao H Z, Xu H, Dong X Y, Wu L Y, Ding B, Dou H, Zhang X G. Chem. Commun., 2023, 59(45): 6853.
[118]
Shehab M K, Weeraratne K S, El-Kadri O M, Yadavalli V K, El-Kaderi H M. Macromol. Rapid Commun., 2023, 44(11): 2200782.
[119]
Lee J Y, Lim H, Park J, Kim M S, Jung J W, Kim J, Kim I D. Adv. Energy. Mater., 2023, 13(26): 2300442.
[120]
Sun J L, Xu Y F, Li A, Tian R Q, Fei Y T, Chen B B, Zhou X S. ACS Appl. Nano Mater., 2022, 5(10): 15592.
[121]
Yang X Y, Gong L, Wang K, Ma S H, Liu W P, Li B W, Li N, Pan H H, Chen X, Wang H L, Liu J M, Jiang J Z. Adv. Mater., 2022, 34(50): 2207245.
[122]
Yang X Y, Hu Y M, Dunlap N, Wang X B, Huang S F, Su Z P, Sharma S, Jin Y H, Huang F, Wang X H, Lee S H, Zhang W. Angew. Chem. Int. Ed., 2020, 59(46): 20385.
[123]
Yang D H, Yao Z Q, Wu D H, Zhang Y H, Zhou Z, Bu X H. J. Mater. Chem. A, 2016, 4(47): 18621.
[124]
Wang Z L, Li Y J, Liu P J, Qi Q Y, Zhang F, Lu G L, Zhao X, Huang X Y. Nanoscale, 2019, 11(12): 5330-5335.
[125]
Jhulki S, Feriante C H, Mysyk R, Evans A M, Magasinski A, Raman A S, Turcheniuk K, Barlow S, Dichtel W R, Yushin G, Marder S R. ACS Appl. Energy Mater., 2021, 4(1): 350.
[126]
Yao C J, Wu Z Z, Xie J, Yu F, Guo W, Xu Z J, Li D S, Zhang S Q, Zhang Q C. ChemSusChem, 2020, 13(9): 2457.
[127]
Luo Z Q, Liu L J, Ning J X, Lei K X, Lu Y, Li F J, Chen J. Angew. Chem. Int. Ed., 2018, 57(30): 9443.
[128]
Lu H Y, Ning F Y, Jin R, Teng C, Wang Y, Xi K, Zhou D S, Xue G. ChemSusChem, 2020, 13(13): 3447.
[129]
Mahmood N, Tang T Y, Hou Y L. Adv. Energy Mater., 2016, 6(17): 1600374.
[130]
Kim T H, Park J S, Chang S K, Choi S, Ryu J H, Song H K. Adv. Energy Mater., 2012, 2(7): 860.
[131]
Wu M M, Zhao Y, Sun B Q, Sun Z H, Li C X, Han Y, Xu L Q, Ge Z, Ren Y X, Zhang M T, Zhang Q, Lu Y, Wang W, Ma Y F, Chen Y S. Nano Energy, 2020, 70: 104498.
[132]
Liu Y, Cai X S, Chen D G, Qin Y, Chen Y, Chen J X, Liang C L. Int. J. Energy Res., 2022, 46(11): 15174.
[133]
Parker J F, Chervin C N, Pala I R, Machler M, Burz M F, Long J W, Rolison D R. Science, 2017, 356(6336): 415.
[134]
Choi J W, Aurbach D. Nat. Rev. Mater., 2016, 1(4): 16013.
[135]
Shehab M K, Weeraratne K S, Huang T, Lao K U, El-Kaderi H M. ACS Appl. Mater. Interfaces, 2021, 13(13): 15083.
[136]
Zhang X H, Yang D, Rui X H, Yu Y, Huang S M. Curr. Opin. Electrochem., 2019, 18: 24-30.
[137]
Pramudita J C, Sehrawat D, Goonetilleke D, Sharma N. Adv. Energy Mater., 2017, 7(24): 1602911.
[138]
Rajagopalan R, Tang Y G, Ji X B, Jia C K, Wang H Y. Adv. Funct. Mater., 2020, 30(12): 1909486.
[139]
Dhir S, Wheeler S, Capone I, Pasta M. Chem, 2020, 6(10): 2442.
[140]
Duan J, Wang W T, Zou D G, Liu J, Li N, Weng J Y, Xu L P, Guan Y, Zhang Y J, Zhou P F. ACS Appl. Mater. Interfaces, 2022, 14(27): 31234.
[141]
Xu C J, Li B H, Du H D, Kang F Y. Angew. Chem. Int. Ed., 2012, 51(4): 933.
[142]
Lee B, Lee H R, Kim H, Chung K Y, Cho B W, Oh S H. Chem. Commun., 2015, 51(45): 9265.
[143]
Pan H, Shao Y, Yan P, Cheng Y, Han K S, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller K T, Liu J. Nat. Energy., 2016, 1(5): 1.
[144]
Yu P, Zeng Y X, Zhang H Z, Yu M H, Tong Y X, Lu X H. Small, 2019, 15(7): 1804760.
[145]
Han S D, Rajput N N, Qu X H, Pan B F, He M N, Ferrandon M S, Liao C, Persson K A, Burrell A K. ACS Appl. Mater. Interfaces, 2016, 8(5): 3021.
[146]
Ma M C, Lu X F, Guo Y, Wang L C, Liang X J. Trac Trends Anal. Chem., 2022, 157: 116741.
[147]
Hong H, Guo X, Zhu J X, Wu Z X, Li Q, Zhi C Y. Sci. China Chem., 2023, 66: 1.
[148]
Liu Y, Zhou W Q, Teo W L, Wang K, Zhang L Y, Zeng Y F, Zhao Y L. Chem, 2020, 6(12): 3172.
[149]
Jarju J J, Lavender A M, Espiña B, Romero V, Salonen L M. Molecules, 2020, 25(22): 5404.
[150]
Bagheri A R, Aramesh N. J. Mater. Sci., 2021, 56(2): 1116.
[151]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.

Funding

National Natural Science Foundation of China(21965027)
Central Guidance on Local Science and Technology Development Fund of Ningxia Province(2023FRD05031)
National First-rate Discipline Construction Project of Ningxia: Chemical Engineering and Technology(NXY-LXK2017A04)
PDF(27780 KB)

Accesses

Citation

Detail

Sections
Recommended

/