Efficient Catalysts for the Selective Hydrogenation of Unsaturated Aldehydes

Xingyue Yang, Shijie Zhou, Yusen Yang, Min Wei

Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 297-318.

PDF(6903 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6903 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 297-318. DOI: 10.7536/PC230728
Review

Efficient Catalysts for the Selective Hydrogenation of Unsaturated Aldehydes

Author information +
History +

Abstract

The selective hydrogenation of unsaturated aldehydes is an important process of fine chemical processing that is widely used in the fields of flavor, medicine and food production, agricultural product processing, and so on. However, the hydrogenation reactivity of current catalysts still needs to be improved and further modulation of catalyst structures is needed. Three design strategies for the selective hydrogenation catalysts are summarized in this paper, modifying the electronic properties of metal active sites, enhancing the synergistic effect between the metal active sites and the electrophilic sites, and utilizing the structural effect to change the adsorption strength and hydrogenation activity of C=O bond or C=C bond. The influences of hydrogen source types, reaction solvents, temperatures and hydrogen pressures on catalytic performance are also summarized. The density functional theory (DFT) calculation, the reaction kinetic model, and the structure-activity relationship of catalysts related to the selective hydrogenation of unsaturated aldehydes are summarized. In the final section, problems, and challenges in the selective hydrogenation of unsaturated aldehydes are discussed, and some feasible solutions are further proposed.

Contents

1 Introduction

2 Design strategy of catalysts

2.1 Modifying electronic properties of metal active sites

2.2 Enhancing the synergistic effect between the metal active sites and the electrophilic sites

2.3 Utilizing the structural effect

3 the influence of reaction conditions on The catalytic performance

3.1 Hydrogen source types

3.2 Reaction solvents

3.3 Reaction temperatures

3.4 Hydrogen pressures

4 The density functional theory calculation

5 Kinetic study of the hydrogenation of unsaturated Aldehydes

6 The hydrogenation mechanism of unsaturated aldehydes

7 Conclusion and outlook

Key words

selective hydrogenation / unsaturated aldehydes / dynamics study / structure-activity relationship / structural design

Cite this article

Download Citations
Xingyue Yang , Shijie Zhou , Yusen Yang , et al. Efficient Catalysts for the Selective Hydrogenation of Unsaturated Aldehydes[J]. Progress in Chemistry. 2024, 36(3): 297-318 https://doi.org/10.7536/PC230728

References

[1]
Zhao M T, Yuan K, Wang Y, Li G D, Guo J, Gu L, Hu W P, Zhao H J, Tang Z Y. Nature, 2016, 539(7627): 76.
[2]
Ke J X, Xiao L Y, Yu G X, Wu H J, Shen G H, Zhang Z Q. Int. J. Biol. Macromol., 2019, 125: 642.
[3]
Sun D L, Yamada Y, Sato S, Ueda W. Green Chem., 2017, 19(14): 3186.
[4]
Hidalgo-Carrillo J, Sebti J, Marinas A, Marinas J M, Sebti S, Urbano F J. J. Colloid Interface Sci., 2012, 382(1): 67.
[5]
Golmakani M T, Tahsiri Z, Alavi N. Int. J. Food Prop., 2018, 21(1): 2660.
[6]
Radhika G R, Raoul B, Mark T G, Pei L, Thomas W Hansen, Kathleen S D, David D H, Jean P T. ACS Catal., 2022, 12(12): 7344.
[7]
Alfilfil L, Ran J S, Chen C L, Dong X L, Wang J J, Han Y. Microporous Mesoporous Mater., 2022, 330: 111566.
[8]
Wang G H, Deng X H, Gu D, Chen K, Tüysüz H, Spliethoff B, Bongard H J, Weidenthaler C, Schmidt W, Schüth F. Angew. Chem. Int. Ed., 2016, 55(37): 11101.
[9]
Luneau M, Lim J S, Patel D A, Sykes E C H, Friend C M, Sautet P. Chem. Rev., 2020, 120(23): 12834.
[10]
Han Q, Liu Y F, Wang D, Yuan F L, Niu X Y, Zhu Y J. RSC Adv., 2016, 6(100): 98356.
[11]
Hu D, Fan W Q, Liu Z, Li L. ChemCatChem, 2018, 10(4): 779.
[12]
Nongwe I, Ravat V, Meijboom R, Coville N J. Appl. Catal. A Gen., 2016, 517: 30.
[13]
Yu H T, Xu Y, Havener K, Zhang L, Wu W J, Liao X J, Huang K. Mol. Catal., 2022, 525: 112343.
[14]
Tian F P, Zhang M J, Zhang X C, Chen X, Wang J L, Zhang Y F, Meng C G, Liang C H. J. Mater. Sci., 2022, 57(5): 3168.
[15]
Steffan M, Klasovsky F, Arras J, Roth C, Radnik J, Hofmeister H, Claus P. Adv. Synth. Catal., 2008, 350(9): 1337.
[16]
Vilella I M J, de Miguel S R, de Lecea C S M, Linares-Solano Á, Scelza O A. Appl. Catal. A Gen., 2005, 281(1-2): 247.
[17]
Li L, Gao G, Zheng J, Shi X, Liu Z. Diam. Relat. Mater., 2019, 91: 272.
[18]
Nagpure A S, Gogoi P, Chilukuri S V. Chem., 2021, 16(18): 2702.
[19]
Shaikh M N, Abdelnaby M M, Hakeem A S, Nasser G A, Yamani Z H. ACS Appl. Nano Mater., 2021, 4(4): 3508.
[20]
Nie R F, Miao M, Du W C, Shi J J, Liu Y C, Hou Z Y. Appl. Catal. B Environ., 2016, 180: 607.
[21]
Nagpure A S, Gurrala L, Gogoi P, Chilukuri S V. RSC Adv., 2016, 6(50): 44333.
[22]
Xu Z X, Duong-Viet C, Liu Y F, Baaziz W, Li B, Nguyen-Dinh L, Ersen O, Pham-Huu C. Appl. Catal. B Environ., 2019, 244: 128.
[23]
Xue B, Xu T C, Li D S, Xu J, Li Y X, Wang F, Zhu J. Catal. Sci. Technol., 2020, 10(4): 1096.
[24]
Zhu J, Dou M D, Lu M H, Xiang X, Ding X J, Liu W X, Li M S. Appl. Catal. A Gen., 2019, 575: 11.
[25]
Chen S J, Meng L, Chen B X, Chen W Y, Duan X Z, Huang X, Zhang B S, Fu H B, Wan Y. ACS Catal., 2017, 7(3): 2074.
[26]
Wang X X, Zheng H Y, Liu X J, Xie G Q, Lu J Q, Jin L Y, Luo M F. Appl. Catal. A Gen., 2010, 388(1/2): 134.
[27]
Chiu M E, Watson D J, Kyriakou G, Tikhov M S, Lambert R M. Angew. Chem. Int. Ed., 2006, 45(45): 7530.
[28]
Chiu M E, Kyriakou G, Williams F J, Watson D J, Tikhov M S, Lambert R M. Chem. Commun., 2006, (12): 1283.
[29]
Abid M, Touroude R. Catal. Lett., 2000, 69: 139.
[30]
Dai Y H, Gao X, Chu X F, Jiang C Y, Yao Y, Guo Z, Zhou C M, Wang C, Wang H M, Yang Y H. J. Catal., 2018, 364: 192.
[31]
Lin W, Cheng H, Li X, Zhang C, Zhao F, Arai M. Chinese J. Catal., 2018, 395:988.
(林伟伟, 程海洋, 李小汝, 张弨, 赵凤玉, 荒井正彦. 催化学报, 2018, 39:988.)
[32]
Wang X F, He Y F, Liu Y Z, Park J, Liang X H. J. Catal., 2018, 366: 61.
[33]
Merlo A B, Machado B F, Vetere V, Faria J L, Casella M L. Appl. Catal. A Gen., 2010, 383(1-2): 43.
[34]
Hui T L, Miao C L, Feng J T, Liu Y N, Wang Q, Wang Y F, Li D Q. J. Catal., 2020, 389: 229.
[35]
Wang H P, Bai S X, Pi Y C, Shao Q, Tan Y M, Huang X Q. ACS Catal., 2019, 9(1): 154.
[36]
Gu Z Z, Chen L Y, Li X Z, Chen L, Zhang Y Y, Duan C Y. Chem. Sci., 2019, 10(7): 2111.
[37]
Li X J, Zhang S F, Zhu L H, Liu J, Zhang H, Zhao N, Chen B H. Mater. Chem. Phys., 2023, 294: 127003.
[38]
Wang G M, Xin H Y, Wang Q X, Wu P, Li X H. J. Catal., 2020, 382: 1.
[39]
Wang L W, Han R R, Ma Y F, Duyar M S, Liu W, Liu J. J. Phys. Chem. C, 2021, 125(41): 22603.
[40]
Zhang W B, Xin H Y, Zhang Y Q, Jin X, Wu P, Xie W H, Li X H. J. Catal., 2021, 395: 375.
[41]
Tian Z B, Liu C, Li Q Y, Hou J Y, Li Y, Ai S Y. Appl. Catal. A Gen., 2015, 506: 134.
[42]
Su J F, Shi W, Liu X C, Zhang L Y, Cheng S B, Zhang Y, Botton G A, Zhang B S. J. Catal., 2020, 388: 164.
[43]
Zhu M W, Huang B, Shao Q, Pi Y C, Qian Y, Huang X Q. ChemCatChem, 2018, 10(15): 3214.
[44]
Dai L X, Zhu W, Lin M, Zhang Z P, Gu J, Wang Y H, Zhang Y W. Inorg. Chem. Front., 2015, 2(10): 949.
[45]
Wang Q X, Wang G M, Xin H Y, Liu J X, Xiong G, Wu P, Li X H. Catal. Sci. Technol., 2019, 9(12): 3226.
[46]
Zhang N, Shao Q, Wang P T, Zhu X, Huang X Q. Small, 2018, 14(19): 1704318.
[47]
Wang P, Shao Q, Cui X, Zhu X, Huang X. Adv. Funct. Mater., 2018, 28: 1705918.
[48]
Wang X F, Liang X H, Geng P, Li Q B. ACS Catal., 2020, 10(4): 2395.
[48]
Wang X F, Liang X H, Geng P, Li Q B. ACS Catal., 2020, 10(4): 2395.
[49]
Cattaneo S, Freakley S J, Morgan D J, Sankar M, Dimitratos N, Hutchings G J. Catal. Sci. Technol., 2018, 8(6): 1677.
[49]
Cattaneo S, Freakley S J, Morgan D J, Sankar M, Dimitratos N, Hutchings G J. Catal. Sci. Technol., 2018, 8(6): 1677.
[50]
Li R R, Yao W B, Jin Y X, Jia W P, Chen X Y, Chen J J, Zheng J L, Hu Y, Han D M, Zhao J. Chem. Eng. J., 2018, 351: 995.
[51]
Ma Y, Feng L, Guo Z L, Deng J T, Pham-Huu C, Liu Y F. Front. Chem., 2019, 7: 751.
[52]
Li P H, Wang Y Y, Wang Y W, Jin G Q, Guo X Y, Tong X L. Chin. J. Chem., 2020, 38(4): 367.
[53]
Dai Y H, Chu X F, Gu J J, Gao X, Xu M, Lu D, Wan X Y, Qi W, Zhang B S, Yang Y H. Appl. Catal. A Gen., 2019, 582: 117098.
[54]
Rana S, Jonnalagadda S B. RSC Adv., 2017, 7(5): 2869.
[55]
Yang Y S, Rao D M, Chen Y D, Dong S Y, Wang B, Zhang X, Wei M. ACS Catal., 2018, 8(12): 11749.
[56]
Mohire S S, Yadav G D. Ind. Eng. Chem. Res., 2018, 57(28): 9083.
[57]
Prakash M G, Mahalakshmy R, Krishnamurthy K R, Viswanathan B. Catal. Today, 2016, 263: 105.
[58]
Wei S P, Zhao Y T, Fan G L, Yang L, Li F. Chem. Eng. J., 2017, 322: 234.
[59]
Weng Z H, Zaera F. ACS Catal., 2018, 8(9): 8513.
[60]
Zahid M, Li J, Ismail A, Zaera F, Zhu Y J. Catal. Sci. Technol., 2021, 11(7): 2433.
[61]
Mo M, Tang J S, Zou L J, Xun Y Y, Guan H R. RSC Adv., 2022, 12(51): 33099.
[62]
Hidalgo-Carrillo J, Aramendía M A, Marinas A, Marinas J M, Urbano F J. Appl. Catal. A Gen., 2010, 385(1-2): 190.
[63]
Wei Z J, Zhu X M, Liu X S, Xu H Q, Li X H, Hou Y X, Liu Y X. Chin. J. Chem. Eng., 2019, 27(2): 369.
[64]
Cao Y Q, Chen B, Guerrero-Sánchez J, Lee I, Zhou X G, Takeuchi N, Zaera F. ACS Catal., 2019, 9(10): 9150.
[65]
Liu Y C, Wang X C, Zhang C, Xu Q, Dang L L, Zhao X, Tan H Q, Li Y G, Zhao F Y. New J. Chem., 2022, 46(33): 15950.
[66]
Tamura M, Tokonami K, Nakagawa Y, Tomishige K. Chem. Commun., 2013, 49(63): 7034.
[67]
Martinez J, Rojas H, Castaneda C, Diaz G, Gomez-Cortes A, Arenas-Alatorre J. Curr. Org. Chem., 2012, 16(23): 2791.
[68]
Zhao J, Ni J, Xu J H, Xu J T, Cen J, Li X N. Catal. Commun., 2014, 54: 72.
[69]
Lin W W, Cheng H Y, He L M, Yu Y C, Zhao F Y. J. Catal., 2013, 303: 110.
[70]
Zhao J B, Yuan H F, Gui Y H, Li X M, Qin X M, Wei C Z, Liu Y F, Wang G Q, Zhou L M, Fang S M. J. Mater. Sci., 2021, 56(9): 5760.
[71]
Yu J, Yang Y S, Wei M. Acta Chim. Sinica, 2019, 77, 1129.
[72]
Gao X, Dai H, Peng L L, Lu D, Wan X Y, Zhou C M, Zheng J W, Dai Y H, Wang H M, Yang Y H. ACS Appl. Mater. Interfaces, 2020, 12(2): 2516.
[73]
Gao Z X, Cai L Y, Miao C L, Hui T L, Wang Q, Li D Q, Feng J T. ChemCatChem, 2022, 14(18): e202200634.
[74]
Mateen M, Akhtar M N, Gao L, Cheong W C M, Lv S S, Zhou Y, Chen Z. Nano Res., 2022, 15(8): 7107.
[75]
He S N, Xie L F, Che M W, Chan H C, Yang L C, Shi Z P, Tang Y, Gao Q S. J. Mol. Catal. A Chem., 2016, 425: 248.
[76]
Zhang R, Wang L C, Ren J Z, Hu C C, Lv B L. J. Colloid Interface Sci., 2023, 630: 549.
[77]
Li Z J, Wei W, Li H H, Li S H, Leng L P, Zhang M Y, Horton J H, Wang D S, Sun W W, Guo C M, Wu W, Wang J. ACS Nano, 2021, 15(6): 10175.
[78]
Zhang R, Wang L C, Yang X, Tao Z, Ren X B, Lv B L. Appl. Surf. Sci., 2019, 492: 736.
[79]
Kato S, Ohyama J, Machida M, Satsuma A. Catal. Sci. Technol., 2019, 9(9): 2097.
[80]
Hu Q M, Wang S, Gao Z, Li Y Q, Zhang Q, Xiang Q, Qin Y. Appl. Catal. B Environ., 2017, 218: 591.
[81]
Cui R Q, Zhou J Q, Wang D, Zhao Y F, Xiang X, Shang H S, Zhang B. Dalton Trans., 2023, 52(11): 3325.
[82]
Xin H Y, Zhang W B, Xiao X X, Chen L, Wu P, Li X H. J. Catal., 2021, 393: 126.
[83]
Peres L, Axet M R, Yi D L, Serp P, Soulantica K. Catal. Today, 2020, 357: 166.
[84]
Jiang F, Cai J, Liu B, Xu Y B, Liu X H. RSC Adv., 2016, 6(79): 75541.
[85]
Yin D, Ren H, Li C, Liu J, Liang C. Chinese J. Catal., 2018, 392, 319.
[86]
Manyar H G, Yang B, Daly H, Moor H, McMonagle S, Tao Y, Yadav G D, Goguet A, Hu P, Hardacre C. ChemCatChem, 2013, 5(2): 506.
[87]
O’Brien C P, Dostert K H, Schauermann S, Freund H J. Chem., 2016, 22(44): 15856.
[88]
Wang F, Bi Y S, Hu K, Wei X J. Chem., 2020, 26(21): 4874.
[89]
Wang F, Zhang Z N, Wei X J, Fang Q H, Jiang X M. Appl. Catal. A Gen., 2017, 543: 196.
[90]
Aydin C, Lu J, Browning N D, Gates B C. Angew. Chem. Int. Ed., 2012, 51(24): 5929.
[91]
Guo M Y, Du Y Z, Zhang M W, Wang L, Zhang X W, Li G Z. ACS Sustainable Chem. Eng., 2022, 10(23): 7485.
[92]
Liu C, Zhu P, Wang J S, Liu H O, Zhang X F. Chem. Eng. J., 2022, 446: 137064.
[93]
Zhou A W, Dou Y B, Zhou J, Li J R. ChemSusChem, 2020, 13(1): 205.
[94]
Liu Q L, Liu Q, Chen Y R, Li Y L, Su H, Liu Q H, Li G Q. Chin. Chemical Lett., 2022, 33(1): 374.
[95]
Geng R Y, Jia H H, Xie Y W, Pan D H, Yu F, Fan B B. Microporous Mesoporous Mater., 2022, 338: 111968.
[96]
Yuan K, Song T Q, Wang D W, Zhang X T, Gao X, Zou Y, Dong H L, Tang Z Y, Hu W P. Angew. Chem. Int. Ed., 2018, 57(20): 5708.
[97]
Liu Q L, Li Y L, Fan Y N, Su C Y, Li G Q. J. Mater. Chem. A, 2020, 8(22): 11442.
[98]
Zhang B Z, Li M Y, Lei H J, Chen J L, Wang S H, Chen C. Appl. Surf. Sci., 2022, 599: 153899.
[99]
Lan X C, Wang T F, Li X D, Huang N, Wang J F. Catal. Sci. Technol., 2016, 6(21): 7703.
[100]
Patil K N, Manikanta P, Srinivasappa P M, Jadhav A H, Nagaraja B M. J. Environ. Chem. Eng., 2022, 10(5): 108208.
[101]
Cui H S, Liu S H, Lv Y, Wu S T, Wang L P, Hao F, Liu P L, Xiong W, Luo H A. J. Catal., 2020, 381: 468.
[102]
Tao R, Shan B Q, Sun H D, Ding M, Xue Q S, Jiang J G, Wu P, Zhang K. J. Phys. Chem. C, 2021, 125(24): 13304.
[103]
Zahid M, Ismail A, Sohail M, Zhu Y J. J. Colloid Interface Sci., 2022, 628: 141.
[104]
Vu K B, Bukhryakov K V, Anjum D H, Rodionov V O. ACS Catal., 2015, 5(4): 2529.
[105]
Sole R, Buranello C, Bardella N, Di Michele A, Paganelli S, Beghetto V. Catalysts, 2021, 11(8): 914.
[106]
Tan Y, Liu X Y, Zhang L L, Liu F, Wang A Q, Zhang T. Chin. J. Catal., 2021, 42(3): 470.
[107]
Ye Y W, Hu Y M, Zheng W B, Jia A P, Wang Y, Lu J Q. Chin. J. Catal., 2023, 47: 265.
[108]
Schröder C, Baumann A K, Schmidt M C, Smyczek J, Haugg P A, Graap O C, Schauermann S. J. Phys. Chem. C, 2022, 126(10): 4907.
[109]
Farrag M. Microporous Mesoporous Mater., 2018, 257: 110.
[110]
Murata K, Ogura K, Ohyama J, Sawabe K, Yamamoto Y, Arai S, Satsuma A. ACS Appl. Mater. Interfaces, 2020, 12(23): 26002.
[111]
Zhang Y B, Ettelaie R, Binks B P, Yang H Q. ACS Catal., 2021, 11(3): 1485.
[112]
Yamada H, Fujimura M, Goto S. J. Alloys Compd., 2004, 375(1-2): 202.
[113]
Siddqui N, Sarkar B, Pendem C, Khatun R, Sivakumar Konthala L N, Sasaki T, Bordoloi A, Bal R. Catal. Sci. Technol., 2017, 7(13): 2828.
[114]
Luo N H, Liao J H, Ouyang L, Wen H L, Liu J T, Tang W P, Luo R S. Organometallics, 2019, 38(15): 3025.
[115]
Cai W M, Yang J, Sun H F, Wang Y B, Ling T, Guo X F, Peng L M, Ding W P. Chin. J. Catal., 2017, 38(8): 1330.
[116]
Zhou Y Y, Li Z H, Liu Y B, Huo J, Chen C, Li Q L, Niu S Y, Wang S Y. ChemSusChem, 2020, 13(7): 1746.
[117]
Zhou Y Y, Chen C, Li Q L, Liu Y B, Wei T, Liu Y Z, Zeng Z B, Bradshaw D, Zhang B, Huo J. Appl. Catal. B Environ., 2022, 311: 121348.
[118]
Wang H J, Liu B Y, Liu F, Wang Y N, Lan X C, Wang S Q, Ali B, Wang T F. ACS Sustainable Chem. Eng., 2020, 8(22): 8195.
[119]
Farrar-Tobar R A, Wei Z H, Jiao H J, Hinze S, De Vries J G. Chem., 2018, 24(11): 2725.
[120]
Li Y, Cheng H Y, Lin W W, Zhang C, Wu Q F, Zhao F Y, Arai M. Catal. Sci. Technol., 2018, 8(14): 3580.
[121]
Leng F Q, Gerber I C, Axet M R, Serp P. Comptes Rendus Chim., 2017, 21(3/4): 346.
[122]
Daimon A, Kamitanaka T, Kishida N, Matsuda T, Harada T. J. Supercrit. Fluids, 2006, 37(2): 215.
[123]
Chen Y Q, Liu W, Yin P, Ju M H, Wang J, Yang W Y, Yang Y S, Shen C. J. Catal., 2021, 393: 1.
[124]
Deng Y C, Gao R, Lin L L, Liu T, Wen X D, Wang S, Ma D. J. Am. Chem. Soc., 2018, 140(43): 14481.
[125]
Wang J, Lv C Q, Liu J H, Ren R R, Wang G C. Int. J. Hydrog. Energy, 2021, 46(2): 1592.
[126]
Joubert J, Delbecq F. Organometallics, 2006, 25(4): 854.
[127]
Lv Y, Han M M, Gong W B, Wang D D, Chen C, Wang G Z, Zhang H M, Zhao H J. Angew. Chem. Int. Ed., 2020, 59(52): 23521.
[128]
Li W J, Wang Y H, Chen P, Zeng M, Jiang J Y, Jin Z L. Catal. Sci. Technol., 2016, 6(20): 7386.
[129]
Guo H, Li Y C, Zuo C C, Zheng Y X, Guo X P, Hao J G, Huang H F, Wang M, Ge T T. AlChE. J., 2022, 68(7): e17683.
[130]
Xin H Y, Li M N, Chen L, Zhao C, Wu P, Li X H. Catal. Sci. Technol., 2023, 13(5): 1488.
[131]
Engelhardt C M, Kennedy R M, Enterkin J A, Poeppelmeier K R, Ellis D E, Marshall C L, Stair P C. ChemCatChem, 2018, 10(3): 632.
[132]
Loffreda D, Delbecq F, Vigné F, Sautet P. Angew. Chem. Int. Ed., 2005, 44(33): 5279.
[133]
Tuokko S, Pihko P M, Honkala K. Angew. Chem. Int. Ed., 2016, 55(5): 1670.
[134]
Murillo L E, Menning C A, Chen J G. J. Catal., 2009, 268(2): 335.
[135]
Liu Q L, Wu J Y, Kang J W, Liu Q, Liao P S, Li G Q. Nanoscale, 2022, 14(41): 15462.
[136]
Jiang J, Xia S, Ni Z, Zhang L. Chem. J. Chinese U., 2016, 374: 693.
(蒋军辉, 夏盛杰, 倪哲明, 张连阳. 高等学校化学学报, 2016, 374:693.)
[137]
Cao Y, Jiang J, Ni Z, Xia S, Qian M, Xue J. Chem. J. Chinese U., 2016, 377:1342.
(曹勇勇, 蒋军辉, 倪哲明, 夏盛杰, 钱梦丹, 薛继龙. 高等学校化学学报, 2016, 377: 1342.)
[138]
Chang S S, Meng S G, Fu X L, Zhang S J, Zheng X Z, Chen S F. Chemistry Select, 2019, 4(7): 2018.
[139]
Li L C, Wang W, Wang X L, Zhang L. J. Mol. Model., 2016, 22(8): 186.
[140]
Li L C, Wei W, Wang W, Wang X L, Zhang L, Tian A M. RSC Adv., 2016, 6(91): 88277.
[141]
Yang X F, Wang A Q, Wang X D, Zhang T, Han K L, Li J. J. Phys. Chem. C, 2009, 113(49): 20918.
[142]
Delbecq F, Sautet P. J. Catal., 2003, 220:115.
[143]
Jiang Z F, Wan W M, Lin Z X, Xie J M, Chen J G. ACS Catal., 2017, 7(9): 5758.
[144]
Komal N P, Manikanta P, Puneethkumar M S, Arvind H J, Bhari M N. J. Environ. Chem. Eng., 2023, 11(1): 109168.
[145]
Liu W, Jiang Y D, Dostert K H, O’Brien C P, Riedel W, Savara A, Schauermann S, Tkatchenko A. Sci. Adv., 2017, 3(7): e1700939.
[146]
Khan M, Joshi S, Ranade V. Chem. Eng. J., 2019, 377: 120512.
[147]
Wang K L, Yang B.. Catal. Sci. Technol., 2017, 7: 4024.
[148]
Ning X, Xu Y M, Wu A Q, Tang C, Jia A P, Luo M F, Lu J Q. Appl. Surf. Sci., 2019, 463: 463.
[149]
Mäki-Arvela P, Denecheau A, Alho K, Wärnå J, Eränen K R, Salmi T, Murzin D Y. Chem. Eng. J., 2007, 134(1-3): 268.
[150]
Kyriakou G, Boucher M B, Jewell A D, Lewis E A, Lawton T J, Baber A E, Tierney H L, Flytzani-Stephanopoulos M, Sykes E C H. Science, 2012, 335(6073): 1209.
[151]
Cao Y Q, Guerrero-Sańchez J, Lee I, Zhou X G, Takeuchi N, Zaera F. ACS Catal., 2020, 10(5): 3431.
[152]
Luo Q Q, Wang T, Beller M, Jiao H J. J. Phys. Chem. C, 2013, 117(24): 12715.
[153]
Ji X W, Niu X Y, Li B, Han Q, Yuan F L, Zaera F, Zhu Y J, Fu H G. ChemCatChem, 2014, 6(11): 3246.
[154]
Zhang Y, Chen C, Gong W B, Song J Y, Su Y P, Zhang H M, Wang G Z, Zhao H J. RSC Adv., 2017, 7(34): 21107.
[155]
Breen J P, Burch R, Gomez-Lopez J, Griffin K, Hayes M. Appl. Catal., A., 2004, 268: 267.
[156]
Wang D, Zhu Y J, Tian C G, Wang L, Zhou W, Dong Y L, Yan H J, Fu H G. ChemCatChem, 2016, 8(9): 1718.
[157]
Zhang W L, Shi W X, Ji W L, Wu H B, Gu Z D, Wang P, Li X H, Qin P S, Zhang J, Fan Y, Wu T Y, Fu Y, Zhang W N, Huo F W. ACS Catal., 2020, 10(10): 5805.
[158]
Dong Y, Zaera F. J. Phys. Chem. Lett., 2018, 9(6): 1301.
[159]
Lan X C, Wang T F. ACS Catal., 2020, 10(4): 2764.

Funding

National Key Research and Development Program(2021YFC2103500)
National Natural Science Foundation of China(22172006)
National Natural Science Foundation of China(22102006)
National Natural Science Foundation of China(22288102)
PDF(6903 KB)

Accesses

Citation

Detail

Sections
Recommended

/