Biomaterials Based on Lignocellulose

Bin Xu, Jianguo Liu, Xinghua Zhang, Lungang Chen, Qi Zhang, Longlong Ma

Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 709-723.

PDF(170180 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(170180 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 709-723. DOI: 10.7536/PC230903
Review

Biomaterials Based on Lignocellulose

Author information +
History +

Abstract

with the continuous depletion of fossil energy and the continuous destruction of the ecological environment,developing environmentally friendly renewable electrochemical energy storage devices and biomedical materials is particularly urgent.as an important renewable resource,lignocellulosic biomass has the advantages of low cost,easy accessibility,environmental friendliness,and rich pore structure,and it has a wide range of application prospects as a renewable,biodegradable,and biocompatible substrate for excellent modified materials.the treatment of biomass materials has been from the traditional methods(including combustion,feed,fertilizer and matrix processing),and gradually towards energy,ecology,material modification,and the preparation of new bio-based functional and smart material products,such as:high-performance energy storage devices and biomedical equipment.in short,the development of new matrix and functional materials With biomass as the main raw material is the development trend.In this study,the latest research progress In preparing biomass-derived materials for high-performance energy storage devices and biomedical fields is summarized and overlooked,and the problems and challenges are also pointed out。

Contents

1 Introduction

2 Application of bio-based materials in electro chemical energy storage

2.1 Super capacitor

2.2 Lithium battery

3 Applications in biomedical

3.1 Cellulose-based materials

3.2 Hemicellulose-based materials

3.3 Lignin-based materials

4 Conclusion and outlook

Key words

lignin / cellulose / hemicelluloses / bio-based materials / synthetic materials

Cite this article

Download Citations
Bin Xu , Jianguo Liu , Xinghua Zhang , et al . Biomaterials Based on Lignocellulose[J]. Progress in Chemistry. 2024, 36(5): 709-723 https://doi.org/10.7536/PC230903

References

[1]
Zhu Q S, Guo Q X, Yan L F. Biomass Clean Energy. Chemical Industry Press, 2002.
( 朱清时, 郭庆祥, 阎立峰. 生物质洁净能源. 化学工业出版社, 2002.)
[2]
Kumar M, Oyedun A O, Kumar A. Renew. Sust. Energ. Rev., 2017, 81.
[3]
Xu T, Du H S, Liu H Y, Liu W, Zhang X Y, Si C L, Liu P W, Zhang K. Adv. Mater, 2021, 33(48): 2101368.
[4]
Yang X, Reid M S, Olsén P, Berglund L A. ACS Nano, 2020, 14(1): 724.
[5]
Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H. Biomacromolecules, 2007, 8(6): 1973.
[6]
Iguchi M, Yamanaka S, Budhiono A. J. Mater. Sci., 2000, 35(2): 261.
[7]
Kang Y J, Chun S J, Lee S S, Kim B Y, Kim J H, Chung H, Lee S Y, Kim W. ACS Nano, 2012, 6(7): 6400.
[8]
Jost K, Durkin D P, Haverhals L M, Brown E K, Langenstein M, De Long H C, Trulove P C, Gogotsi Y, Dion G. Adv. Energy Mater., 2015, 5(4): 1401286.
[9]
Lee C M, Kafle K, Park Y B, Kim S H. Phys. Chem. Chem. Phys., 2014, 16(22): 10844.
[10]
Lv D, Du H S, Che X P, Wu M Y, Zhang Y D, Liu C, Nie S X, Zhang X Y, Li B. ACS Sustainable Chem. Eng., 2019, 7(10): 9449.
[11]
Santos M C G, da Silva D R, Pinto P S, Ferlauto A S, Lacerda R G, Jesus W P, da Cunha T H R, Ortega P F R, Lavall R L. Electrochim. Acta, 2020, 349: 136241.
[12]
Guan F Y, Chen S Y, Sheng N, Chen Y, Yao J J, Pei Q B, Wang H P. Chem. Eng. J., 2019, 360: 829.
[13]
Kim J H, Gu M S, Lee D H, Kim J H, Oh Y S, Min S H, Kim B S, Lee S Y. Nano Lett., 2016, 16(9): 5533.
[14]
Li L Y, Lu F X, Wang C, Zhang F L, Liang W H, Kuga S, Dong Z C, Zhao Y, Huang Y, Wu M. J. Mater. Chem. A, 2018, 6(47): 24468.
[15]
Zhao D W, Chen C J, Zhang Q, Chen W S, Liu S X, Wang Q W, Liu Y X, Li J, Yu H P. Adv. Energy Mater., 2017, 7(18): 9.
[16]
Wang F Q, Ouyang D H, Zhou Z Y, Page S J, Liu D H, Zhao X B. J. Energy Chem., 2021, 57: 247.
[17]
Liu W S, Yao Y M, Fu O L, Jiang S H, Fang Y C, Wei Y, Lu X H. RSC Adv., 2017, 7(77): 48537.
[18]
Zhang Y, Yu B J, Zhang J, Ding X H, Zeng J X, Chen M M, Wang C Y. ChemElectroChem, 2018, 5(15): 2142.
[19]
Zhang W, Yu C Y, Chang L B, Zhong W B, Yang W T. Electrochim. Acta, 2018, 282: 642.
[20]
Chen W M, Wang X, Feizbakhshan M, Liu C Z, Hong S, Yang P, Zhou X Y. J. Colloid Interface Sci., 2019, 540: 524.
[21]
Zhang L M, You T T, Zhou T, Zhou X, Xu F. ACS Appl. Mater. Interfaces, 2016, 8(22): 13918.
[22]
Guo N N, Li M, Sun X K, Wang F, Yang R. Green Chem., 2017, 19(11): 2595.
[23]
Shao Y L, El-Kady M F, Sun J Y, Li Y G, Zhang Q H, Zhu M F, Wang H Z, Dunn B, Kaner R B. Chem. Rev., 2018, 118(18): 9233.
[24]
Zhou Z P, Chen F, Kuang T R, Chang L Q, Yang J T, Fan P, Zhao Z P, Zhong M Q. Electrochim. Acta, 2018, 274: 288.
[25]
Fu F B, Yang D J, Wang H, Qian Y, Yuan F, Zhong J Q, Qiu X Q. ACS Sustainable Chem. Eng., 2019, 7(19): 16419.
[26]
Jha S, Mehta S, Chen Y, Renner P, Sankar S S, Parkinson D, Kundu S, Liang H. J. Mater. Chem. C, 2020, 8(10): 3418.
[27]
Ajjan F N, Casado N, Rębiś T, Elfwing A, Solin N, Mecerreyes D, Inganäs O. J. Mater. Chem. A, 2016, 4(5): 1838.
[28]
Zhou B J, Li J, Liu W, Jiang H M, Li S B, Tan L X, Dong L C, She L, Wei Z D. ChemSusChem, 2020, 13(10): 2628.
[29]
Lin H L, Liu Y P, Chang Z X, Yan S, Liu S C, Han S. Microporous Mesoporous Mater., 2020, 292: 109707.
[30]
Wang Y, Lu C, Cao X, Wang Q, Yang G, Chan J. Int. J. Mol. SCI., 2022, 23: 7107.
[31]
Zhang Z L, Li F F, Chen J C, Yang G H, Ji X X, Tian Z J, Wang B B, Zhang L, Lucia L. Front. Bioeng. Biotechnol., 2022, 10: 1030944.
[32]
Li Y Y, Zhu H L, Shen F, Wan J Y, Han X G, Dai J Q, Dai H Q, Hu L B. Adv. Funct. Mater., 2014, 24(46): 7366.
[33]
Wang R H, Dai X Y, Qian Z F, Zhong S K, Chen S, Fan S T, Zhang H, Wu F X. ACS Appl. Mater. Interfaces, 2020, 12(28): 31628.
[34]
Cao S M, Shi L Y, Miao M, Fang J H, Zhao H B, Feng X. Electrochim. Acta, 2019, 298: 22.
[35]
Kim P J, Kim K, Pol V G. Energy Storage Mater., 2019, 19: 179.
[36]
Cao D X, Xing Y J, Tantratian K, Wang X, Ma Y, Mukhopadhyay A, Cheng Z, Zhang Q, Jiao Y C, Chen L, Zhu H L. Adv. Mater., 2019, 31(14): 1807313.
[37]
Wang C Y, Zheng Z J, Feng Y Q, Ye H, Cao F F, Guo Z P. Nano Energy, 2020, 74: 104817.
[38]
Kuang Y D, Chen C J, Pastel G, Li Y J, Song J W, Mi R Y, Kong W Q, Liu B Y, Jiang Y Q, Yang K, Hu L B. Adv. Energy Mater., 2018, 8(33): 8.
[39]
Sun X X, Li M C, Ren S X, Lei T Z, Lee S Y, Lee S Y, Wu Q L. J. Power Sources, 2020, 454: 11.
[40]
Huang C H, Ji H, Yang Y, Guo B, Luo L, Meng Z H, Fan L L, Xu J. Carbohydr. Polym., 2020, 230: 115570.
[41]
Wang Z H, Pan R J, Ruan C Q, Edström K, Strømme M, Nyholm L. Adv. Sci., 2018, 5(3): 1700663.
[42]
Xu D, Wang B R, Wang Q, Gu S, Li W W, Jin J, Chen C H, Wen Z Y. ACS Appl. Mater. Interfaces, 2018, 10(21): 17809.
[43]
Du Z, Su Y Z, Qu Y Y, Zhao L Z, Jia X B, Mo Y, Yu F, Du J, Chen Y. Electrochim. Acta, 2019, 299: 19.
[44]
Dong T T, Zhang J J, Xu G J, Chai J C, Du H P, Wang L L, Wen H J, Zang X, Du A B, Jia Q M, Zhou X H, Cui G L. Energy Environ. Sci., 2018, 11(5): 1197.
[45]
Nowak A P, Hagberg J, Leijonmarck S, Schweinebarth H, Baker D, Uhlin A, Tomani P, Lindbergh G. Holzforschung, 2018, 72(2): 81.
[46]
Xi Y B, Yang D J, Wang Y Y, Huang J H, Yan M Z, Yi C H, Qian Y, Qiu X Q. Holzforschung, 2020, 74(3): 293.
[47]
Chen C J, Zhang Y, Li Y J, Kuang Y D, Song J W, Luo W, Wang Y B, Yao Y G, Pastel G, Xie J, Hu L B. Adv. Energy Mater., 2017, 7(17): 1700595.
[48]
Chen T, Hu J Z, Zhang L, Pan J, Liu Y Y, Cheng Y T. J. Power Sources, 2017, 362: 236.
[49]
Luo C, Du L L, Wu W, Xu H L, Zhang G Z, Li S, Wang C Y, Lu Z G, Deng Y H. ACS Sustainable Chem. Eng., 2018, 6(10): 12621.
[50]
Ma Y, Chen K, Ma J, Xu G J, Dong S M, Chen B B, Li J D, Chen Z, Zhou X H, Cui G L. Energy Environ. Sci., 2019, 12(1): 273.
[51]
Gong S D, Huang Y, Cao H J, Lin Y H, Li Y, Tang S H, Wang M S, Li X. J. Power Sources, 2016, 307: 624.
[52]
Zhang L, Peng X W, Zhong L X, Chua W, Xiang Z H, Sun R C. Curr. Med. Chem., 2019, 26(14): 2456.
[53]
Kumar P, Barrett D M, Delwiche M J, Stroeve P. Ind. Eng. Chem. Res., 2009, 48(8): 3713.
[54]
Ye S H, Watanabe J, Iwasaki Y, Ishihara K. Biomaterials, 2003, 24(23): 4143.
[55]
Ma H Y, Burger C, Hsiao B S, Chu B. J. Mater. Chem., 2011, 21(21): 7507.
[56]
Bhattacharya M, Malinen M M, Lauren P, Lou Y R, Kuisma S W, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M. J. Control. Release, 2012, 164(3): 291.
[57]
Wan Y Z, Huang Y, Yuan C D, Raman S, Zhu Y, Jiang H J, He F, Gao C. Mater. Sci. Eng. C, 2007, 27(4): 855.
[58]
Dunweg G, Steinfeld L, Ansorge W. US, 1995.
[59]
Ishihara K, Miyazaki H, Kurosaki T, Nakabayashi N. J. Biomed. Mater. Res., 1995, 29(2): 181.
[60]
Idris A, Yet L K. J. Membr. Sci., 2006, 280(1/2): 920.
[61]
Qiu X Y, Ren X Q, Hu S W. Carbohydr. Polym., 2013, 92(2): 1887.
[62]
Ma Z, Ramakrishna S. J. Membr. Sci., 2008, 319(1/2): 23.
[63]
Liu S M, Luo W C, Huang H H. Int. J. Biol. Macromol., 2016, 89: 527.
[64]
Liu R, Dai L, Si C L, Zeng Z G. Carbohydr. Polym., 2018, 195: 63.
[65]
Nie Z H, Nijhuis C A, Gong J L, Chen X, Kumachev A, Martinez A W, Narovlyansky M, Whitesides G M. Lab Chip, 2010, 10(4): 477.
[66]
Kuek Lawrence C S, Tan S N, Floresca C Z. Sens. Actuat. B Chem., 2014, 193: 536.
[67]
Schyrr B, Pasche S, Voirin G, Weder C, Simon Y C, Foster E J. ACS Appl. Mater. Interfaces, 2014, 6(15): 12674.
[68]
Sadasivuni K K, Kafy A, Kim H C, Ko H U, Mun S, Kim J. Synth. Met., 2015, 206: 154.
[69]
Mahadeva S K, Yun S, Kim J. Sens. Actuat. A Phys., 2011, 165(2): 194.
[70]
Maniruzzaman M, Jang S D, Kim J. Mater. Sci. Eng. B, 2012, 177(11): 844.
[71]
Peng X W, Ren J L, Zhong L X, Sun R C. Biomacromolecules, 2011, 12(9): 3321.
[72]
Hartman J, Albertsson A C, Sjöberg J. Biomacromolecules, 2006, 7(6): 1983.
[73]
Silva A, Dasilva E, Oliveira E, Nagashimajr T, Soares L, Medeiros A, Araujo J, Araujo I, Carrico A, Egito E. Int. J. Pharm., 2007, 334(1/2): 42.
[74]
Peng X W, Ren J L, Zhong L X, Peng F, Sun R C. J. Agric. Food Chem., 2011, 59(15): 8208.
[75]
Peng X W, Zhong L X, Ren J L, Sun R C. J. Agric. Food Chem., 2012, 60(15): 3909.
[76]
Kai D, Jiang S, Low Z W, Loh X J. J. Mater. Chem. B, 2015, 3(30): 6194.
[77]
Salami M A, Kaveian F, Rafienia M, Sber-Samandari S, Khandan A, Naeimi M. J. Med. Signals Sens., 2017, 7(4): 228.
[78]
Larrañeta E, Imízcoz M, Toh J X, Irwin N J, Ripolin A, Perminova A, Domínguez R J, Rodríguez A, Donnelly R F. ACS Sustainable Chem. Eng., 2018, 6(7): 9037.
[79]
Zhou Y, Han Y M, Li G Y, Yang S, Xiong F Q, Chu F X. J. Nanomater., 2019, 9(2): 188.
[80]
Ravishankar K, Venkatesan M, Desingh R P, Mahalingam A, Sadhasivam B, Subramaniyam R, Dhamodharan R. Mat. Sci. Eng. C-Mater., 2019, 102: 447.

Funding

Fundamental Research Funds for the Central Universities(2242022R10058)
PDF(170180 KB)

Accesses

Citation

Detail

Sections
Recommended

/