Applications of Graphene in Hydrogen Evolution Electrocatalyst

Yiming Zhang, Jianping Guo, Jiale Zhang, Aowen Zheng, Yanyan Wang, Guangke Tian

Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 633-644.

PDF(82557 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(82557 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 633-644. DOI: 10.7536/PC230905
Review

Applications of Graphene in Hydrogen Evolution Electrocatalyst

Author information +
History +

Abstract

Developing hydrogen energy is an important direction in the future.Industrialized scale electrolysis of water for hydrogen production requires the use of low-cost hydrogen evolution electrocatalyst materials to reduce its overpotential.graphene has shown broad application prospects in hydrogen evolution electrocatalyst materials due to its large specific surface area,excellent conductivity,good stability,adjustable electronic structure,and easy modification of structure and surface state.This article provides a detailed analysis of the mechanism of graphene application in hydrogen evolution electrocatalysis.based on different mechanisms,graphene-based hydrogen evolution electrocatalyst materials were classified and their latest research progress was reviewed.Finally,the future development direction of graphene-based hydrogen evolution electrocatalytic materials was prospected。

Contents

1 Introduction

2 HER electrocatalyst supported by Graphene

2.1 Supporting Metals

2.2 Supporting nonprecious metal compounds

3 Catalytically activated-graphene based HER electrocatalyst

3.1 Doping-induced electrocatalytic activity

3.2 Strain-induced electrocatalytic activity

3.3 Defect-induced electrocatalytic activity

4 Heterogeneous graphene-based HER electrocatalyst

5 Graphene with different morphologies based-HER electrocatalyst

5.1 Zero-dimensional graphene

5.2 Three-dimensional skeleton graphene

5.3 Encapsulated graphene

6 Conclusion and outlook

Key words

graphene / hydrogen evolution reaction / electrocatalyst

Cite this article

Download Citations
Yiming Zhang , Jianping Guo , Jiale Zhang , et al . Applications of Graphene in Hydrogen Evolution Electrocatalyst[J]. Progress in Chemistry. 2024, 36(5): 633-644 https://doi.org/10.7536/PC230905

References

[1]
Eftekhari A. Int. J. Hydrog. Energy, 2017, 42(16): 11053.
[2]
Amin M, Shah H H, Fareed A G, Khan W U, Chung E, Zia A, Rahman Farooqi Z U, Lee C. Int. J. Hydrog. Energy, 2022, 47(77): 33112.
[3]
Nasser M, Megahed T F, Ookawara S, Hassan H. Environ. Sci. Pollut. Res., 2022, 29(58): 86994.
[4]
Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Dubonos I V, Firsov A A. Science, 2004, 306(5696), 666-669.
[5]
Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q C, Yan Q Y, Boey F, Zhang H. Small, 2011, 7(14): 1876.
[6]
Pyun K R, Ko S H. Mater. Today Energy, 2019, 12: 431.
[7]
Wehrhold M, Neubert T J, Grosser T, Vondráček M, Honolka J, Balasubramanian K. Chem. Commun., 2022, 58(23): 3823.
[8]
Zheng W J, Zhang Y, Niu K Y, Liu T, Bustillo K, Ercius P, Nordlund D, Wu J Q, Zheng H M, Du X W. Chem. Commun., 2018, 54(97): 13726.
[9]
Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G, Kim K. Nature, 2012, 490(7419): 192.
[10]
Duan J J, Chen S, Jaroniec M, Qiao S Z. ACS Catal., 2015, 5(9): 5207.
[11]
Aslan E, Hatay Patir I. ChemElectroChem, 2022, 9(12): e202200381.
[12]
Yang M Q, Zhang N, Pagliaro M, Xu Y J. Chem. Soc. Rev., 2014, 43(24): 8240.
[13]
Zhang N, Yang M Q, Liu S Q, Sun Y G, Xu Y J. Chem. Rev., 2015, 115(18): 10307.
[14]
Han C, Zhang N, Xu Y J. Nano Today, 2016, 11(3): 351.
[15]
Zhang X F, Cai J N, Liu W K, Huang B H, Lin S. J. Appl. Electrochem., 2020, 50(6): 713.
[16]
Sadiq I, Ali S A, Ahmad T. Catalysts, 2023, 13(1): 109.
[17]
Xu G R, Hui J J, Huang T, Chen Y, Lee J M. J. Power Sources, 2015, 285: 393.
[18]
Du Z K, Wang Y L, Li J S, Liu J P. J. Nanopart. Res., 2019, 21(1): 13.
[19]
Jiang H N, Yang W W, Xu M Q, Wang E Q, Wei Y, Liu W, Gu X K, Liu L X, Chen Q, Zhai P B, Zou X L, Ajayan P M, Zhou W, Gong Y J. Nat. Commun., 2022, 13: 6863.
[20]
Cheng N C, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton G A, Sun X L. Nat. Commun., 2016, 7: 13638.
[21]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.
[22]
Zhu Y Y, Cui J L, An S L, Li Z Q, Zhang Y Q, He W X. J. Alloys Compd., 2019, 810: 151932.
[23]
Sun M H, Ji J P, Hu M Y, Weng M Y, Zhang Y P, Yu H S, Tang J J, Zheng J C, Jiang Z, Pan F, Liang C D, Lin Z. ACS Catal., 2019, 9(9): 8213.
[24]
Qiu H J, Ito Y, Cong W T, Tan Y W, Liu P, Hirata A, Fujita T, Tang Z, Chen M W. Angew. Chem. Int. Ed., 2015, 54(47): 14031.
[25]
Wu C, Kopold P, Ding Y L, van Aken P A, Maier J, Yu Y. ACS Nano, 2015, 9(6): 6610.
[26]
Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J. J. Am. Chem. Soc., 2011, 133(19): 7296.
[27]
Gnanasekar P, Periyanagounder D, Kulandaivel J. Nanoscale, 2019, 11(5): 2439.
[28]
Kumar S, Sahoo P K, Satpati A K. ACS Omega, 2017, 2(11): 7532.
[29]
Hsiao C Y, Dang V D, Hsu Y W, Lu Y T, Hsu P J, Le P A, Wei K H. Electrochim. Acta, 2023, 448: 142169.
[30]
He H Y, He Z, Shen Q. Int. J. Hydrog. Energy, 2018, 43(48): 21835.
[31]
Yang Z Y, Zhu J, Xu X L, Wang L, Zhou G B, Yang Z, Zhang Y F. RSC Adv., 2023, 13(6): 4056.
[32]
Ma L B, Hu Y, Zhu G Y, Chen R P, Chen T, Lu H L, Wang Y R, Liang J, Liu H X, Yan C Z, Tie Z X, Jin Z, Liu J. Chem. Mater., 2016, 28(16): 5733.
[33]
Liu Z Q, Li N, Zhao H Y, Du Y P. J. Mater. Chem. A, 2015, 3(39): 19706.
[34]
Konkena B, Masa J, Xia W, Muhler M, Schuhmann W. Nano Energy, 2016, 29: 46.
[35]
Caliskan S, Wang A Q, Qin F, House S D, Lee J K. ACS Appl. Nano Mater., 2022, 5(3): 3790.
[36]
Wu Z X, Wang J, Zhu J, Guo J P, Xiao W P, Xuan C J, Lei W, Wang D L. Electrochim. Acta, 2017, 232: 254.
[37]
Zhou Y, Yang Y Y, Wang R J, Wang X T, Zhang X Y, Qiang L L, Wang W B, Wang Q, Hu Z A. J. Mater. Chem. A, 2018, 6(39): 19038.
[38]
Zhang W, Ma X Y, Zhong C, Ma T Y, Deng Y D, Hu W B, Han X P. Front. Chem., 2018, 6: 569.
[39]
Zhang J T, Wang X D, Xue Y R, Xu Z Y, Pei J J, Zhuang Z B. Inorg. Chem., 2018, 57(21): 13859.
[40]
Venugopal N K A, Yin S L, Li Y H, Xue H R, Xu Y, Li X N, Wang H J, Wang L. Chem., 2018, 13(6): 679.
[41]
Cai Z X, Song X H, Wang Y R, Chen X. ChemElectroChem, 2015, 2(11): 1665.
[42]
Xu P M, Zhang J M, Ye Z F, Liu Y Y, Cen T L, Yuan D S. Appl. Surf. Sci., 2019, 494: 749.
[43]
Zheng Y, Jiao Y, Li L H, Xing T, Chen Y, Jaroniec M, Qiao S Z. ACS Nano, 2014, 8(5): 5290.
[44]
Tian Y, Mei R, Xue D Z, Zhang X, Peng W. Electrochim. Acta, 2016, 219: 781.
[45]
Mao X Y, Qin Z H, Ge S D, Rong C, Zhang B W, Xuan F Z. Mater. Horiz., 2023, 10(2): 340.
[46]
Zheng Y, Jiao Y, Zhu Y H, Li L H, Han Y, Chen Y, Du A J, Jaroniec M, Qiao S Z. Nat. Commun., 2014, 5: 3783.
[47]
Sathe B R, Zou X X, Asefa T. Catal. Sci. Technol., 2014, 4(7): 2023.
[48]
Huang X D, Zhao Y F, Ao Z M, Wang G X. Sci. Rep., 2014, 4: 7557.
[49]
Lin L, Li J Y, Yuan Q H, Li Q C, Zhang J C, Sun L Z, Rui D R, Chen Z L, Jia K C, Wang M Z, Zhang Y F, Rummeli M H, Kang N, Xu H Q, Ding F, Peng H L, Liu Z F. Sci. Adv., 2019, 5(8): 8337.
[50]
Xia L, Li Y J, Song H, Li X X, Gong W J, Jiang X Y, Javanbakht M, Zhang X M, Gao B, Chu P K. RSC Adv., 2022, 12(53): 34760.
[51]
Fei H L, Dong J C, Arellano-Jiménez M J, Ye G L, Dong Kim N, Samuel E L G, Peng Z W, Zhu Z, Qin F, Bao J M, Yacaman M J, Ajayan P M, Chen D L, Tour J M. Nat. Commun., 2015, 6: 8668.
[52]
Wang T, Wang L X, Wu D L, Xia W, Jia D Z. Sci. Rep., 2015, 5: 9591.
[53]
Hung Y H, Dutta D, Tseng C J, Chang J K, Bhattacharyya A J, Su C Y. J. Phys. Chem. C, 2019, 123(36): 22202.
[54]
Thirumal V, Yuvakkumar R, Kumar P S, Ravi G, Shobana M, Saravanakumar B, Velauthapillai D. Int. J. Hydrog. Energy, 2022, 47(98): 41461.
[55]
Ito Y, Cong W T, Fujita T, Tang Z, Chen M W. Angew. Chem. Int. Ed., 2015, 54(7): 2131.
[56]
Jiang H L, Zhu Y H, Su Y H, Yao Y F, Liu Y Y, Yang X L, Li C Z. J. Mater. Chem. A, 2015, 3(24): 12642.
[57]
Oncel Ozgur D. Fuel, 2022, 328: 125538.
[58]
Lin Z Y, Yang Y, Li M S, Huang H, Hu W, Cheng L, Yan W S, Yu Z W, Mao K T, Xia G L, Lu J, Jiang P, Yang K, Zhang R R, Xu P P, Wang C L, Hu L, Chen Q W. Angew. Chem. Int. Ed., 2019, 58(47): 16973.
[59]
Jiao S L, Fu X W, Huang H W. Adv. Funct. Mater., 2022, 32(4): 7651.
[60]
Kim M A, Sorescu D C, Amemiya S, Jordan K D, Liu H T. ACS Appl. Mater. Interfaces, 2022, 14(8): 10691.
[61]
Lee C G, Wei X D, Kysar J W, Hone J. Science, 2008, 321(5887): 385.
[62]
Zhang C H, Yu G T, Ku R Q, Huang X R, Chen W. Appl. Surf. Sci., 2019, 481: 272.
[63]
Kislenko V A, Pavlov S V, Kislenko S A. Electrochim. Acta, 2020, 341: 136011.
[64]
Jia Y, Zhang L Z, Du A J, Gao G P, Chen J, Yan X C, Brown C L, Yao X D. Adv. Mater., 2016, 28(43): 9532.
[65]
Chen Z Q, Wu H B, Li J, Wang Y F, Guo W, Cao C B, Chen Z. Appl. Catal. B Environ., 2020, 265: 118576.
[66]
Tian Y, Wei Z, Wang X J, Peng S, Zhang X, Liu W M. Int. J. Hydrog. Energy, 2017, 42(7): 4184.
[67]
Cai X D, Song Q, Jiao D H, Yu H T, Tan X, Wang R R, Luo S Y. Int. J. Hydrog. Energy, 2022, 47(93): 39499.
[68]
Ha T D C, Do H H, Lee H, Ha N N, Ha N T T, Ahn S H, Oh Y, Kim S Y, Kim M G. Nanoscale, 2022, 14(26): 9331.
[69]
Bui H T, Linh D C, Nguyen L D, Chang H, Patil S A, Shrestha N K, Bui K X, Bui T S, Nguyen T N A, Tung N T, Han S H, San P T. J. Mater. Sci., 2022, 57(40): 18993.
[70]
Huang H J, Yan M M, Yang C Z, He H Y, Jiang Q G, Yang L, Lu Z Y, Sun Z Q, Xu X T, Bando Y, Yamauchi Y. Adv. Mater., 2019, 31(48): 1903415.
[71]
Liu Y X, Xu X J, Lv S C, Li H W, Si Z C, Wu X D, Ran R, Weng D. Catal. Sci. Technol., 2021, 11(9): 3039.
[72]
Ma L, Xu L M, Xu X Y, Zhou X P, Luo J, Zhang L L. Mater. Sci. Eng. B, 2016, 212: 30.
[73]
Chen Z L, Qing H L, Wang R R, Wu R B. Energy Environ. Sci., 2021, 14(5): 3160.
[74]
Guo J X, Zhu H F, Sun Y F, Tang L, Zhang X. Electrochim. Acta, 2016, 211: 603.
[75]
Guo B J, Yu K, Li H L, Qi R J, Zhang Y Y, Song H L, Tang Z, Zhu Z Q, Chen M W. ACS Appl. Mater. Interfaces, 2017, 9(4): 3653.
[76]
Xue Y, Xie Y S, Xu C Y, He H Y, Jiang Q G, Ying G B, Huang H J. Surf. Interfaces, 2022, 30: 101907.
[77]
Wang X Y, Yuan W Y, Yu Y N, Li C M. ChemSusChem, 2017, 10(5): 1014.
[78]
Wang H P, Li X B, Gao L, Wu H L, Yang J, Cai L, Ma T B, Tung C H, Wu L Z, Yu G. Angew. Chem. Int. Ed., 2018, 57(1): 192.
[79]
Ji S Y, Zhang Y M, Ma G, Wang Y Y, Tian G K. Mater. Lett., 2023, 337: 133969.
[80]
Liu Y Z, Zhu Y Z, Fan X B, Wang S B, Li Y, Zhang F B, Zhang G L, Peng W C. Carbon, 2017, 121: 163.
[81]
Wei S Q, Xing P X, Tang Z J, Wang Y Y, Dai L Y. J. Power Sources, 2023, 555: 232414.
[82]
He H Y, Chen Y X, Yang C Z, Yang L, Jiang Q G, Huang H J. J. Energy Chem., 2022, 67: 483.
[83]
Deng J, Ren P J, Deng D H, Bao X H. Angew. Chem. Int. Ed., 2015, 54(7): 2100.
[84]
Liu B, Peng H Q, Cheng J Y, Zhang K, Chen D, Shen D, Wu S L, Jiao T P, Kong X, Gao Q L, Bu S Y, Lee C S, Zhang W J. Small, 2019, 15(48): 1970260.
[85]
Zhu Y F, Xu G Y, Song W Q, Zhao Y Z, He Z M, Miao Z C. Ceram. Int., 2021, 47(21): 30005.
[86]
Sarwar S, Nautiyal A, Cook J, Yuan Y F, Li J H, Uprety S, Shahbazian-Yassar R, Wang R G, Park M, Bozack M J, Zhang X Y. Sci. China Mater., 2020, 63(1): 62.
[87]
Dang V D, Hsiao C Y, Le P A, Le V Q, Ho Phuong Thao D, Do T H, Wei K H. ACS Appl. Energy Mater., 2022, 5(10): 12817.
[88]
An L H, Zhang W, Ma W J, Wang S, Ma L Z, Liu Q Y, Guo J X, Zhang X. J. Taiwan Inst. Chem. Eng., 2019, 104: 75.
[89]
Zheng X L, Zhang G Y, Xu X P, Liu L, Zhang J N, Xu Q. Appl. Surf. Sci., 2019, 496: 143694.
[90]
Lin L, Sun Z M, Yao H Y, Yuan M W, Yang H, Li H F, Zhang Q H, Wang D W, Gu L, Sun G B, Zhu J, Fang W H, Tang Z Y. J. Phys. Chem. C, 2019, 123(49): 29722.
[91]
Wang Y L, Sun G Q, Chen L H, Du Z K, Li X Y, Ye C F, Liu J P, Su B L. Appl. Surf. Sci., 2021, 566: 150712.
[92]
Cui Y, Guo X Y, Zhang J, Li X A, Zhu X B, Huang W. Nano Res., 2022, 15(1): 677.
[93]
Gong J, Zhang Z Y, Zeng Z P, Wang W J, Kong L X, Liu J Y, Chen P. Carbon, 2021, 184: 554.
[94]
Yang N N, Chen Z G, Zhao Z G, Cui Y. N. Carbon Mater., 2022, 37(2): 392.
[95]
Xu X B, Sun Y, Qiao W, Zhang X, Chen X, Song X Y, Wu L Q, Zhong W, Du Y W. Appl. Surf. Sci., 2017, 396: 1520.
[96]
Ma J W, Wang M, Lei G Y, Zhang G L, Zhang F B, Peng W C, Fan X B, Li Y. Small, 2018, 14(2): 1702895.
PDF(82557 KB)

Accesses

Citation

Detail

Sections
Recommended

/