Spiro-Type Small Molecule Hole Transport Materials in Perovskite Solar Cells

Ying Zhou, Xuepeng Liu, Xianfu Zhang, Mingyuan Han, Jianlin Chen, Yongpeng Liang, Botong Li, Yong Ding, Molang Cai, Songyuan Dai

Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 613-632.

PDF(35322 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(35322 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 613-632. DOI: 10.7536/PC231006
Review

Spiro-Type Small Molecule Hole Transport Materials in Perovskite Solar Cells

Author information +
History +

Abstract

the performance of hole transport materials significantly influences the hole transport and electron-hole recombination in perovskite solar cells,which in turn affects the cells'efficiency.the spiro-type structure has a unique orthogonal molecular conformation.this makes the molecules form good contact on the perovskite film easily.It also leads to uniform charge transport characteristics and a higher glass transition temperature.this material has been widely used as a highly efficient hole transport material skeleton unit in perovskite solar cells.This paper summarizes the advancements in spiro-type hole transport materials,focusing primarily on the optimization of terminal functional groups and spiro-type core regulation in spiro-type small molecule materials.It discusses how changes in molecular structure impact the material’s photophysics,electrochemistry,thermal stability,hole transport characteristics,and overall performance in perovskite solar cells.Additionally,This paper forecasts future developments in This area,examining the trends and research directions of high-performance spiral-type hole transport materials。

Contents

1 Introduction

2 Spiro-type hole transporting materials

2.1 Optimization of terminal groups of spiro-type small molecule HTM

2.2 Molecular nuclear regulation of spiro-type small molecule HTM

3 Conclusion and outlook

Key words

perovskite solar cell / hole transport material / spiro-type / photovoltaic conversion efficiency

Cite this article

Download Citations
Ying Zhou , Xuepeng Liu , Xianfu Zhang , et al . Spiro-Type Small Molecule Hole Transport Materials in Perovskite Solar Cells[J]. Progress in Chemistry. 2024, 36(5): 613-632 https://doi.org/10.7536/PC231006

References

[1]
Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M. Nature, 2013, 499(7458): 316.
[2]
Cao C H, Zhang C J, Yang J L, Sun J, Pang S P, Wu H, Wu R S, Gao Y L, Liu C B. Chem. Mater., 2016, 28(8): 2742.
[3]
Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Energy Environ. Sci., 2014, 7(3): 982.
[4]
Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Nature, 2015, 517(7535): 476.
[5]
Kim H S, Im S H, Park N G. J. Phys. Chem. C, 2014, 118(11): 5615.
[6]
Zheng K B, Zhu Q S, Abdellah M, Messing M E, Zhang W, Generalov A, Niu Y R, Ribaud L, Canton S E, Pullerits T. J. Phys. Chem. Lett., 2015, 6(15): 2969.
[7]
Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Science, 2013, 342(6156): 341.
[8]
Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C. Science, 2013, 342(6156): 344.
[9]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.
[10]
[11]
Kim J Y, Lee J W, Jung H S, Shin H, Park N G. Chem. Rev., 2020, 120(15): 7867.
[12]
Min H, Lee D Y, Kim J, Kim G, Lee K S, Kim J, Paik M J, Kim Y K, Kim K S, Kim M G, Shin T J, Il Seok S. Nature, 2021, 598(7881): 444.
[13]
Wang A L, Wang S R, Lin H, Ding L M, Hao F. Journal of the Chinese Ceramic Society, 2021, 49(7): 1306.
(王爱丽, 汪舒蓉, 林红, 丁黎明, 郝锋. 硅酸盐学报, 2021, 49(7): 1306.).
[14]
Calió L, Kazim S, Grätzel M, Ahmad S. Angew. Chem. Int. Ed., 2016, 55(47): 14522.
[15]
Meng D, Xue J J, Zhao Y P, Zhang E, Zheng R, Yang Y. Chem. Rev., 2022, 122(18): 14954.
[16]
Guo Y X, Zhao F, Tao J H, Jiang J C, Zhang J G, Yang J P, Hu Z G, Chu J H. ChemSusChem, 2019, 12(5): 983.
[17]
Yang Y, Yang M J, Moore D, Yan Y, Miller E, Zhu K, Beard M. Nat. Energy, 2017, 2(2): 16207.
[18]
Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I. Nature, 2023, 616(7958): 724.
[19]
Zhao Y, Ma F, Qu Z H, Yu S Q, Shen T, Deng H X, Chu X B, Peng X X, Yuan Y B, Zhang X W, You J B. Science, 2022, 377(6605): 531.
[20]
Zeng Q, Wu Y G, Wang B Y, Wang Y L, Wang R, Li J Z, Liang M, Yang L Y, Xue S. IEEE J. Photovolt., 2019, 9(5): 1280.
[21]
Liu X P, Ma S, Mateen M, Shi P J, Liu C, Ding Y, Cai M L, Guli M N, Nazeeruddin M K, Dai S Y. Sustain. Energy Fuels, 2020, 4(4): 1875.
[22]
Park S J, Jeon S, Lee I K, Zhang J, Jeong H, Park J Y, Bang J, Ahn T K, Shin H W, Kim B G, Park H J. J. Mater. Chem. A, 2017, 5(25): 13220.
[23]
Shao J Y, Zhong Y W. Chinese Journal of Organic Chemistry, 2021, 41(04): 1447.
(邵将洋, 钟羽武. 有机化学, 2021, 41(04): 1447.).
[24]
Liu X P, Kong F T, Chen W C, Yu T, Guo F L, Chen J, Dai S Y. Acta Physico-Chimica Sinica, 2016, 32(6): 1347.
(刘雪朋, 孔凡太, 陈汪超, 于婷, 郭福领, 陈健, 戴松元. 物理化学学报, 2016, 32(6): 1347.).
[25]
Shao J Y, Zhong Y W. Chem. Phys. Rev., 2021, 2(2): 021302.
[26]
Guo H X, Zhang H, Shen C, Zhang D W, Liu S J, Wu Y Z, Zhu W H. Angew. Chem. Int. Ed., 2021, 60(5): 2674.
[27]
Zhang H, Wu Y Z, Zhang W W, Li E P, Shen C, Jiang H Y, Tian H, Zhu W H. Chem. Sci., 2018, 9(27): 5919.
[28]
Niu T Q, Zhu W Y, Zhang Y H, Xue Q F, Jiao X C, Wang Z J, Xie Y M, Li P, Chen R F, Huang F, Li Y, Yip H L, Cao Y. Joule, 2021, 5(1): 249.
[29]
Chen J, Xia J X, Gao W J, Yu H J, Zhong J X, Jia C Y, Qin Y S, She Z G, Kuang D B, Shao G. ACS Appl. Mater. Interfaces, 2020, 12(18): 21088.
[30]
Zhu H W, Shen Z J, Pan L F, Han J L, Eickemeyer F T, Ren Y M, Li X G, Wang S R, Liu H L, Dong X F, Zakeeruddin S M, Hagfeldt A, Liu Y H, Grätzel M. ACS Energy Lett., 2021, 6(1): 208.
[31]
Saragi T P I, Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J. Chem. Rev., 2007, 107(4): 1011.
[32]
Mahajan P, Padha B, Verma S, Gupta V, Datt R, Tsoi W C, Satapathi S, Arya S. J. Energy Chem., 2022, 68: 330.
[33]
Sun M L, Sun M L, Ou C J, Ren B Y, Xie L H, Zhao X H, Huang W, Ou C J, Ren B Y, Xie L H, Zhao X H, Huang W. Gen. Chem., 2020, 6(1): 190021.
[34]
Vaghi L, Rizzo F. Sol. RRL, 2023, 7(7): 2201108.
[35]
Vaitukaityte D, Momblona C, Rakstys K, Sutanto A A, Ding B, Igci C, Jankauskas V, Gruodis A, Malinauskas T, Asiri A M, Dyson P J, Getautis V, Nazeeruddin M K. Chem. Mater., 2021, 33(15): 6059.
[36]
Shao J Y, Zhong Y W. Chin. J. Org. Chem., 2021, 41(4): 1447.
[37]
Xu B, Bi D Q, Hua Y, Liu P, Cheng M, Grätzel M, Kloo L, Hagfeldt A, Sun L C. Energy Environ. Sci., 2016, 9(3): 873.
[38]
Bach U, Lupo D, Comte P, Moser J E, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M. Nature, 1998, 395(6702): 583.
[39]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2: 591.
[40]
Lamberti F, Schmitz F, Chen W, He Z B, Gatti T. Sol. RRL, 2021, 5(10): 2100514.
[41]
Kim S G, Le T H, de Monfreid T, Goubard F, Bui T T, Park N G. Adv. Mater., 2021, 33(12): 2007431.
[42]
Leijtens T, Giovenzana T, Habisreutinger S N, Tinkham J S, Noel N K, Kamino B A, Sadoughi G, Sellinger A, Snaith H J. ACS Appl. Mater. Interfaces, 2016, 8(9): 5981.
[43]
Jena A K, Ikegami M, Miyasaka T. ACS Energy Lett., 2017, 2(8): 1760.
[44]
Jena A K, Numata Y, Ikegami M, Miyasaka T. J. Mater. Chem. A, 2018, 6(5): 2219.
[45]
Zhao X, Kim H S, Seo J Y, Park N G. ACS Appl. Mater. Interfaces, 2017, 9(8): 7148.
[46]
Han Y P, Zhang G, Xie H B, Kong T F, Li Y H, Zhang Y, Song J, Bi D Q. Nano Energy, 2022, 96: 107072.
[47]
Fan X C, Wang K, Shi Y Z, Cheng Y C, Lee Y T, Yu J, Chen X K, Adachi C, Zhang X H. Nat. Photonics, 2023, 17(3): 280.
[48]
Wang T, Zhang Y, Kong W Y, Qiao L, Peng B G, Shen Z C, Han Q F, Chen H, Yuan Z L, Zheng R K, Yang X D. Science, 2022, 377(6611): 1227.
[49]
Zhang T K, Wang F, Kim H B, Choi I W, Wang C F, Cho E, Konefal R, Puttisong Y, Terado K, Kobera L, Chen M Y, Yang M, Bai S, Yang B W, Suo J J, Yang S C, Liu X J, Fu F, Yoshida H, Chen W M, Brus J, Coropceanu V, Hagfeldt A, Brédas J L, Fahlman M, Kim D S, Hu Z J, Gao F. Science, 2022, 377(6605): 495.
[50]
Hammett L P. J. Am. Chem. Soc., 1937, 59(1): 96.
[51]
Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J, Seok S I. J. Am. Chem. Soc., 2014, 136(22): 7837.
[52]
Malinauskas T, Tomkute-Luksiene D, Sens R, Daskeviciene M, Send R, Wonneberger H, Jankauskas V, Bruder I, Getautis V. ACS Appl. Mater. Interfaces, 2015, 7(21): 11107.
[53]
Tomkute-Luksiene D, Daskeviciene M, Malinauskas T, Jankauskas V, Degutyte R, Send R, Pschirer N G, Wonneberger H, Bruder I, Getautis V. RSC Adv., 2016, 6(65): 60587.
[54]
Zhang M D, Zhao D X, Chen L, Pan N, Huang C Y, Cao H, Chen M D. Sol. Energy Mater. Sol. Cells, 2018, 176: 318.
[55]
Zhou Y, Zhang X F, Han M Y, Wu N, Chen J L, Rahim G, Wu Y H, Dai S Y, Liu X P. Sol. Energy Mater. Sol. Cells, 2023, 257: 112375.
[56]
Hu Z, Fu W F, Yan L J, Miao J S, Yu H T, He Y W, Goto O, Meng H, Chen H Z, Huang W. Chem. Sci., 2016, 7(8): 5007.
[57]
Zhang X F, Liu X P, Wu N, Ghadari R, Han M Y, Wang Y, Ding Y, Cai M L, Qu Z P, Dai S Y. J. Energy Chem., 2022, 67: 19.
[58]
Onozawa-Komatsuzaki N, Tsuchiya D, Inoue S, Kogo A, Funaki T, Chikamatsu M, Ueno T, Murakami T N. ACS Appl. Energy Mater., 2022, 5(6): 6633.
[59]
Jeong M, Choi I W, Go E M, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi H W, Lee J Y, Bae J H, Kwak S K, Kim D S, Yang C. Science, 2020, 369(6511): 1615.
[60]
Zhang Z, Yuan L G, Li B, Luo H M, Wang S J, Li Z J, Xing Y F, Wang J R, Dong P, Guo K P, Wang Z Q, Yan K Y. Sol. RRL, 2022, 6(2): 2100944.
[61]
Liu F, Bi S Q, Wang X R, Leng X Y, Han M M, Xue B D, Li Q Q, Zhou H Q, Li Z. Sci. China Chem., 2019, 62(6): 739.
[62]
Wang C, Hu J L, Li C H, Qiu S D, Liu X H, Zeng L X, Liu C T, Mai Y H, Guo F. Sol. RRL, 2020, 4(3): 1900389.
[63]
Sallenave X, Shasti M, Anaraki E H, Volyniuk D, Grazulevicius J V, Zakeeruddin S M, Mortezaali A, Grätzel M, Hagfeldt A, Sini G. J. Mater. Chem. A, 2020, 8(17): 8527.
[64]
Li W H, Cariello M, Méndez M, Cooke G, Palomares E. ACS Appl. Energy Mater., 2023, 6(3): 1239.
[65]
Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Il Seok S, Lee J, Seo J. Nat. Energy, 2018, 3(8): 682.
[66]
Deng Z H, He M S, Zhang Y, Ullah F, Ding K, Liang J H, Zhang Z F, Xu H, Qiu Y K, Xie Z Y, Shan T, Chen Z H, Zhong H L, Chen C C. Chem. Mater., 2021, 33(1): 285.
[67]
Liang Y P, Chen J L, Zhang X F, Han M Y, Ghadari R, Wu N, Wang Y, Zhou Y, Liu X P, Dai S Y. J. Mater. Chem. C, 2022, 10(30): 10988.
[68]
Jegorovė A, Momblona C, Daškevičienė M, Magomedov A, Degutyte R, Asiri A M, Jankauskas V, Sutanto A A, Kanda H, Brooks K, Klipfel N, Nazeeruddin M K, Getautis V. Sol. RRL, 2022, 6(6): 2100990.
[69]
Han M, Liang Y, Chen J, Zhang X, Ghadari R, Liu X, Wu N, Wang Y, Zhou Y, Ding Y, Cai M, Chen H, Dai S. ChemSusChem, 2022, 15(20): 202201485.
[70]
Ren Y T, Wei Y F, Li T Y, Mu Y F, Zhang M, Yuan Y, Zhang J, Wang P. Energy Environ. Sci., 2023, 16(8): 3534.
[71]
Jeong M, Choi I W, Yim K, Jeong S, Kim M, Choi S J, Cho Y, An J H, Kim H B, Jo Y, Kang S H, Bae J H, Lee C W, Kim D S, Yang C. Nat. Photon., 2022, 16(2): 119.
[72]
Shi Y T, Xue Y, Hou K L, Meng G H, Wang K, Chi R H, Chen F, Ren H C, Pang M Y, Hao C. RSC Adv., 2016, 6(99): 96990.
[73]
Liu X, Ding B, Han M, Yang Z, Chen J, Shi P, Xue X, Ghadari R, Zhang X, Wang R, Brooks K, Tao L, Kinge S, Dai S, Sheng J, Dyson P J, Nazeeruddin M K, Ding Y. Angew. Chem. Int. Ed., 2023, 62: e202304350.
[74]
Lin P H, Lee K M, Ting C C, Liu C Y. J. Mater. Chem. A, 2019, 7(11): 5934.
[75]
Hajikhanmirzaei L, Shahroosvand H, Pashaei B, Monache G D, Nazeeruddin M K, Pilkington M. J. Mater. Chem. C, 2020, 8(18): 6221.
[76]
Ameen S, Akhtar M S, Nazim M, Kim E B, Nazeeruddin M K, Shin H S. Electrochim. Acta, 2019, 319: 885.
[77]
Liu Y, Liu F, Wang J G, Huang H Y, Yan S H, Gao S, Wang L, Huang W, Qin T S. Dyes Pigm., 2021, 188: 109164.
[78]
Xie L H, Liu F, Tang C, Hou X Y, Hua Y R, Fan Q L, Huang W. Org. Lett., 2006, 8(13): 2787.
[79]
Bi D Q, Xu B, Gao P, Sun L C, Grätzel M, Hagfeldt A. Nano Energy, 2016, 23: 138.
[80]
Chiykowski V A, Cao Y, Tan H R, Tabor D P, Sargent E H, Aspuru-Guzik A, Berlinguette C P. Angew. Chem. Int. Ed., 2018, 57(47): 15529.
[81]
Liu Q L, Ren B Y, Sun Y G, Xie L H, Huang W. Acta Chimica Sinica, 2021, 79(10): 1181.
(刘庆琳, 任保轶, 孙亚光, 解令海, 黄维. 化学学报, 2021, 79(10): 1181.).
[82]
Xu B, Zhang J B, Hua Y, Liu P, Wang L Q, Ruan C Q, Li Y Y, Boschloo G, Johansson E M J, Kloo L, Hagfeldt A, Jen A K Y, Sun L C. Chem, 2017, 2(5): 676.
[83]
Zhang J B, Xu B, Yang L, Ruan C Q, Wang L Q, Liu P, Zhang W, Vlachopoulos N, Kloo L, Boschloo G, Sun L C, Hagfeldt A, Johansson E M J. Adv. Energy Mater., 2018, 8(2): 1701209.
[84]
Lee D Y, Sivakumar G, Manju, Misra R, Seok S I. ACS Appl. Mater. Interfaces, 2020, 12(25): 28246.
[85]
Wu B X, Fu Q, Sun L X, Liu Y Q, Sun Z, Xue S, Liu Y S, Liang M. ACS Energy Lett., 2022, 7(8): 2667.
[86]
Zhang Z, Shen L N, Wang S J, Zheng L F, Li D, Li Z J, Xing Y F, Guo K P, Xie L Q, Wei Z H. Adv. Energy Mater., 2023, 13(14): 2204362.
[87]
Han M, Zhang X, Liu X, Ghadari R, Wu N, Quan H, Li B, Du W, Dai S. Solar RRL, 2024, 8: 2300824. DOI: https://doi.org/10.1002/solr.202300824.
[88]
Ma S Y, Zhang H, Zhao N, Cheng Y B, Wang M K, Shen Y, Tu G L. J. Mater. Chem. A, 2015, 3(23): 12139.
[89]
Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena J P, Gao P, Scopelliti R, Mosconi E, Dahmen K H, De Angelis F, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin M K. Nat. Energy, 2016, 1(2): 15017.
[90]
Akin S, Bauer M, Uchida R, Arora N, Jacopin G, Liu Y H, Hertel D, Meerholz K, Mena-Osteritz E, Bäuerle P, Zakeeruddin S M, Dar M I, Grätzel M. ACS Appl. Energy Mater., 2020, 3(8): 7456.
[91]
Chen Y C, Huang S K, Li S S, Tsai Y Y, Chen C P, Chen C W, Chang Y J. ChemSusChem, 2018, 11(18): 3225.
[92]
Chang Y M, Li C W, Lu Y L, Wu M S, Li H, Lin Y S, Lu C W, Chen C P, Chang Y J. ACS Appl. Mater. Interfaces, 2021, 13(5): 6450.
[93]
Lee K M, Abate S Y, Yang J H, Chiu W H, Ahn S, Li S R, Liau K L, Tao Y T, Lin Y D. Chem. Eng. J., 2023, 454: 139926.
[94]
Xu J B, Xiong Q, Huang X F, Sun P P, Zhou Q, Du Y T, Zhang Z L, Gao P. Small, 2023, 19(12): e2206435.
[95]
Yu W, Zhang J H, Tu D D, Yang Q, Wang X C, Liu X, Cheng F, Qiao Y, Li G, Guo X, Li C. Sol. RRL, 2020, 4(1): 1900367.
[96]
Wang Y K, Yuan Z C, Shi G Z, Li Y X, Li Q, Hui F, Sun B Q, Jiang Z Q, Liao L S. Adv. Funct. Mater., 2016, 26(9): 1375.
[97]
Wang Y, Zhu Z L, Chueh C C, Jen A K Y, Chi Y. Adv. Energy Mater., 2017, 7(19): 1700823.
[98]
Drigo N, Roldan-Carmona C, Franckevičius M, Lin K H, Gegevičius R, Kim H, Schouwink P A, Sutanto A A, Olthof S, Sohail M, Meerholz K, Gulbinas V, Corminboeuf C, Paek S, Nazeeruddin M K. J. Am. Chem. Soc., 2020, 142(4): 1792.
[99]
Xu J B, Liang L S, Mai C L, Zhang Z L, Zhou Q, Xiong Q, Zhang Z Z, Deng L H, Gao P. Nanoscale, 2020, 12(24): 13157.
[100]
Cao Y, Li Y L, Morrissey T, Lam B, Patrick B O, Dvorak D J, Xia Z C, Kelly T L, Berlinguette C P. Energy Environ. Sci., 2019, 12(12): 3502.
[101]
Yu W, Zhang J H, Wang X C, Liu X, Tu D D, Zhang J, Guo X, Li C. Sol. RRL, 2018, 2(7): 1800048.
[102]
Gao K, Xu B, Hong C S, Shi X L, Liu H B, Li X S, Xie L H, Jen A K Y. Adv. Energy Mater., 2018, 8(22): 1800809.
[103]
Luo Y Q, Chitumalla R K, Ham S Y, Cakan D N, Kim T, Paek S, Meng Y S, Jang J, Fenning D P, Kim M C. ACS Energy Lett., 2023, 8(12): 5003.

Funding

National Key R&D Program of China(2020YFB1506400)
National Natural Science Foundation of China(61904053)
National Natural Science Foundation of China(22279033)
111 project(B16016)
Special Foundation for Carbon Peak Carbon Neutralization Technology Innovation Program of Jiangsu Province(BE2022026)
PDF(35322 KB)

Accesses

Citation

Detail

Sections
Recommended

/