Research progress in additive manufacturing technology of magnesium alloys

Qingzhuang LI, Hanzheng ZHANG, Shuo WANG, Peng WANG, Mengnan FENG

Journal of Materials Engineering ›› 2023, Vol. 51 ›› Issue (11) : 34-51.

PDF(12332 KB)
Home Journals Journal of Materials Engineering
Journal of Materials Engineering

Abbreviation (ISO4): Journal of Materials Engineering      Editor in chief: Xiangbao CHEN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(12332 KB)
Journal of Materials Engineering ›› 2023, Vol. 51 ›› Issue (11) : 34-51. DOI: 10.11868/j.issn.1001-4381.2021.001133
REVIEW

Research progress in additive manufacturing technology of magnesium alloys

Author information +
History +

Abstract

Magnesium alloy as the most potential light structural material, has the advantages of high specific strength, specific stiffness and easy recycling, which contributes to the realization of lightweight in the industrial field. Compared with the traditional manufacturing technologies, the new and advanced manufacturing technology of additive manufacturing represent for high manufacturing efficiency, excellent performance, and forming complex structures. The technology of additive manufacturing for magnesium alloy, which has broad application prospects in the industrial field, is urgently required to be studied. In this paper, the recent studies of the three major additive manufacturing technologies for magnesium alloy:selective laser melting, wire+arc additive manufacturing, and friction stir additive manufacturing were summarized and analyzed from the aspects of forming characteristic, defect control, and features of microstructure and property.Finally,the developments in shape and performance control of the additive manufacturing technology for magnesium alloy:simulation analysis, process control, and heat source regulation were discussed.

Key words

magnesium alloy / additive manufacturing / forming characteristic / defect control / microstructure and property

Cite this article

Download Citations
Qingzhuang LI , Hanzheng ZHANG , Shuo WANG , et al . Research progress in additive manufacturing technology of magnesium alloys[J]. Journal of Materials Engineering. 2023, 51(11): 34-51 https://doi.org/10.11868/j.issn.1001-4381.2021.001133

References

1
KULEKCI M K. Magnesium and its alloys applications in automotive industry[J].The International Journal of Advanced Manufacturing Technology200839(9/10): 851-865.
2
DZIUBA D MEYER-LINDENBERG A SEITZ J M, et al. Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant[J].Acta Biomaterialia20139(10): 8548-8560.
3
OGAWA Y ANDO D SUTOU Y, et al. A lightweight shape-memory magnesium alloy[J].Science2016353(6297): 368-370.
4
中国航空材料手册委员会. 中国航空材料手册[M]. 北京: 中国标准出版社, 2002.
Committee for the Chinese Aerospace Materials Handbook. Handbook of Chinese aerospace materials[M]. Beijing: China Standard Press, 2002.
5
LUO A A SACHDEV A K. Mechanical properties and microstructure of AZ31 magnesium alloy tubes[M]∥Essential Readings in Magnesium Technology.Cham,Springer:2016: 381-387.
6
张占领, 张艳琴, 刘真.镁合金压铸件常见缺陷及改进措施[J].铸造技术201940(7):718-721.
ZHANG Z L ZHANG Y Q LIU Z. Common defects of magnesium alloy castings and improvement measures[J].Foundry Technology201940(7):718-721.
7
MOSTAFA Y ELBESTAWI M A. A review of metal additive manufacturing technologies[J].Solid State Phenomena2018278: 1-14.
8
EMMELMANN C KRANZ J HERZOG D, et al. Laser additive manufacturing of metals[M]∥Laser Technology in Biomimetics: Basics and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014: 143-162.
9
WILLIAMS S W MARTINA F ADDISON A C, et al. Wire+ arc additive manufacturing[J].Materials Science and Technology201632(7): 641-647.
10
MA H T YUAN R XIE Y P, et al. The role of Ag, Ca, Zr and Al in strengthening effects of ZK series alloys by altering G.P. zones stability[J].Acta Materialia2018147: 42-50.
11
汪荣香,洪立鑫,章晓波.生物医用镁合金耐腐蚀性能研究进展[J].材料工程202149(12):14-27.
WANG R X HONG L X ZHANG X B, et al. Research progress in corrosion resistance of biomedical magnesium alloys[J].Journal of Materials Engineering202149(12):14-27.
12
YAN Y XIONG X M CHEN J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020[J].Journal of Magnesium and Alloys20219(3): 705-747.
13
关桥.焊接/连接与增材制造(3D打印)[J].焊接201473 (5): 1-8.
GUAN Q.Welding/Joining and additive manufacturing (3D printing)[J].Welding and Joining201473 (5): 1-8.
14
WU C L WEI Z MAN H C. Additive manufacturing of ZK60 magnesium alloy by selective laser melting: parameter optimization, microstructure and biodegradability[J].Materials Today Communications202126: 101922.
15
TAKAGI H SASAHARA H, ABE T, et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing[J].Additive Manufacturing201824: 498-507.
16
PALANIVEL S NELATURU P GLASS B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J].Materials & Design201565: 934-952.
17
NG C, SAVALANI M MAN H, et al. Layer manufacturing of magnesium and its alloy structures for future applications[J].Virtual and Physical Prototyping20105(1): 13-19.
18
NG C C SAVALANI M M LAU M L, et al. Microstructure and mechanical properties of selective laser melted magnesium[J].Applied Surface Science2011257(17): 7447-7454.
19
CHI C N SAVALANI M MAN H C. Fabrication of magnesium using selective laser melting technique[J].Rapid Prototyping Journal201117(6): 479-490.
20
谢辙. 选区激光熔化成形AZ91D镁合金的工艺与机理研究[D]. 武汉:华中科技大学, 2013.
XIE Z. Research on processing and mechanism of AZ91D magnesium alloy by selective laser melting[D].Wuhan: Huazhong University of Science & Technology, 2013.
21
WEI K GAO M WANG Z, et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy[J].Materials Science and Engineering: A2014611: 212-222.
22
SCHMID D RENZA J ZAEH M F, et al. Process influences on laser-beam melting of the magnesium alloy AZ91[J].Physics Procedia201683: 927-936.
23
魏恺文, 王泽敏, 曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损[J].金属学报201652(2): 184-190.
WEI K W WANG Z M ZENG X Y. Element loss of AZ91D magnesium alloy during selective laser melting process[J].Acta Metallurgica Sinica201652(2): 184-190.
24
SAVALANI M M PIZARRO J M. Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium[J].Rapid Prototyping Journal201622(1): 115-122.
25
PAWLAK A ROSIENKIEWICZ M CHLEBUS E. Design of experiments approach in AZ31 powder selective laser melting process optimization[J].Archives of Civil and Mechanical Engineering201717(1): 9-18.
26
LIU C ZHANG M CHEN C. Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing[J].Materials Science and Engineering:A2017703:359-371.
27
ZHANG M CHEN C LIU C, et al. Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing[J].Metals20188(8): 635.
28
BAER F BERGER L JAUER L, et al. Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis[J].Acta Biomaterialia201998: 36-49.
29
ESMAILY M ZENG Z MORTAZAVI A N, et al. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting[J].Additive Manufacturing202035: 101321.
30
LIU S GUO H. Influence of hot isostatic pressing (HIP) on mechanical properties of magnesium alloy produced by selective laser melting (SLM)[J].Materials Letters2020265: 127463.
31
TELANG V S PEMMADA R THOMAS V, et al. Harnessing additive manufacturing for magnesium based metallic bioimplants: recent advances and future perspectives[J].Current Opinion in Biomedical Engineering202117(1): 100264.
32
DOÑATE-BUENDÍA C GU D SCHMIDT M, et al. On the selection and design of powder materials for laser additive manufacturing[J].Materials & Design2021204: 109653.
33
YANG Y LU C SHEN L, et al. In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing[J].Journal of Magnesium and Alloys202311(2): 629-640.
34
FU P H WANG N Q LIAO H G, et al. Microstructure and mechanical properties of high strength Mg-15Gd-1Zn-0.4Zr alloy additive-manufactured by selective laser melting process[J].Transactions of Nonferrous Metals Society of China202131(7): 1969-1978.
35
SUCHÝ J KLAKURKOVÁ L MAN O, et al. Corrosion behaviour of WE43 magnesium alloy printed using selective laser melting in simulation body fluid solution[J].J Manuf Process202169: 556-566.
36
WANG W HE L YANG X, et al. Microstructure and microhardness mechanism of selective laser melting Mg-Y-Sm-Zn-Zr alloy[J].Journal of Alloys and Compounds2021868: 159107.
37
徐春杰, 华心雨, 马东, 等. 选区激光熔化AZ91D镁合金的组织与性能[J].铸造技术202142(9): 749-753.
XU C J HUA X Y MA D. Study on microstructure and properties of selective laser melted (SLM) magnesium alloy AZ91D[J].Foundry Technology202142(9): 749-753.
38
LI J LI H LIANG Y, et al. The microstructure and mechanical properties of multi-strand, composite welding-wire welded joints of high nitrogen austenitic stainless steel[J].Materials201912(18): 2944.
39
ZHANG B WANG C WANG Z, et al. Microstructure and properties of Al alloy ER5183 deposited by variable polarity cold metal transfer[J].Journal of Materials Processing Technology2019267: 167-176.
40
GUO J ZHOU Y LIU C, et al. Wire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequency[J].Materials20169(10): 823.
41
曲宏韬, 申俊琦, 步贤政, 等. AZ31镁合金CMT堆焊工艺与接头组织研究[J].航天制造技术2017(1): 34-37.
QU H T SHEN J Q BU X Z, et al. Study on cladding process and microstructure of magnesium alloys employing CMT welding[J].Aerospace Manufacturing Technology2017(1): 34-37.
42
施瀚超,胡立杰,郑涛.电流对电弧增材制造AZ31镁合金成型与组织性能的影响[J].铸造技术201839(10): 2285-2288.
SHI H C HU L J ZHENG T. Effects of electric current on the forming, microstructure and mechanical properties of AZ31 alloy prepared by wire arc additive manufacturing[J].Foundry Technology201839(10): 2285-2288.
43
姚巨坤, 江宏亮, 殷凤良. 镁合金CMT-电弧增材再制造工艺与组织性能研究[J].工具技术201953(1): 65-69.
YAO J K JIANG H L YIN F L. Study on remanufacturing process and microstructure of magnesium alloy CMT-arc additives[J].Tool Technology201953(1): 65-69.
44
GUO Y PAN H REN L, et al. Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy[J].Materials Letters2019247:4-6.
45
BI J SHEN J HU S, et al. Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing[J].Materials Letters2020276: 128185.
46
YANG X LIU J WANG Z, et al. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process[J].Materials Science and Engineering: A2020774: 138942.
47
GUO Y QUAN G JIANG Y, et al. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding[J].Journal of Magnesium and Alloys20219(1): 192-201.
48
WANG P ZHANG H ZHU H, et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: processing, microstructure, and mechanical behavior[J].Journal of Materials Processing Technology2021288: 116895.
49
占宇航, 郭阳阳, 李章张, 等. 工艺参数对电弧增材制造镁合金组织和性能的影响[J].热加工工艺202251(19):26-29.
ZHAN Y H GUO Y Y LI Z Z, et al. Effect of process parameters on microstructure and properties of magnesium alloy produced by wire arc additive manufacturing[J].Hot Working Technology202251(19):26-29.
50
GUO Y QUAN G CELIKIN M, et al. Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing[J].Journal of Magnesium and Alloys202210(7): 1930-1940.
51
倪加明, 刘思余, 李志豪, 等. 镁合金电弧熔丝增材成形质量控制研究[J].热加工工艺202150(13): 128-132.
NI J M LIU S Y LI Z H,et al. Study on forming quality control of magnesium alloy wire arc additive manufacturing[J].Hot Working Technology202150(13): 128-132.
52
KLEIN T ARNOLDT A SCHNALL M, et al. Microstructure formation and mechanical properties of a wire-arc additive manufactured magnesium alloy[J].JOM202173(4):1126-1134.
53
LI J QIU Y YANG J, et al. Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution[J].Journal of Magnesium and Alloys202311(1): 217-229.
54
FANG X YANG J WANG S, et al. Additive manufacturing of high performance AZ31 magnesium alloy with full equiaxed grains: microstructure, mechanical property, and electromechanical corrosion performance[J].Journal of Materials Processing Technology2022300: 117430.
55
YING T ZHAO Z X YAN P F, et al. Effect of fabrication parameters on the microstructure and mechanical properties of wire arc additive manufactured AZ61 alloy[J].Materials Letters2022307:131014.
56
冯吉才, 王亚荣, 张忠典. 镁合金焊接技术的研究现状及应用[J].中国有色金属学报200515(2): 165-178.
FENG J C WANG Y R ZHANG Z D. Status and expectation of research on welding of magnesium alloy[J].The Chinese Journal of Nonferrous Metals200515(2): 165-178.
57
KUMAR SRIVASTAVA A KUMAR N DIXIT A RAI. Friction stir additive manufacturing-an innovative tool to enhance mechanical and microstructural properties[J].Materials Science and Engineering: B2021263: 114832 .
58
DESAI A M KHATRI B C PATEL V, et al. Friction stir welding of AZ31 magnesium alloy: a review[J].Materialstoday Proceedings202147 (4) : 6576-6584.
59
CALVERT J R. Microstructure and mechanical properties of WE43 alloy produced via additive friction stir technology[D]. Virginia Tech2015.
60
McCLELLAND Z AVERY D Z WILLIAMS M B, et al. Microstructure and mechanical properties of high shear material deposition of rare earth magnesium alloys WE43[C]∥Magnesium Technology 2019. Cham,Switzerland:Springer International Publishing, 2019: 277-282.
61
HO Y H JOSHI S S WU T C, et al. In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites[J].Materials Science and Engineering: C2020109: 110632.
62
WLODARSKI S AVERY D Z WHITE B C, et al. Evaluation of grain refinement and mechanical properties of additive friction stir layer welding of AZ31 magnesium alloy[J].Journal of Materials Engineering and Performance202130(2): 964-972.
63
赵梓钧, 杨新岐, 李胜利,等. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响[J].材料工程201947(9):84-92.
ZHAO Z J YANG X Q LI S L, et al. Influence of tool shape and process on formation and defects of friction stir additive manufactured build[J].Journal of Materials Engineering201947(9):84-92.
64
SALEHI M MALEKSAEEDI S FARNOUSH H, et al. An investigation into interaction between magnesium powder and Ar gas: implications for selective laser melting of magnesium[J].Powder Technology2018333: 252-261.
65
郜庆伟, 赵健, 舒凤远, 等. 铝合金增材制造技术研究进展[J] .材料工程201947(11): 32-42.
GAO Q W ZHAO J SHU F Y,et al. Research progress in aluminum alloy additive manufacturing[J].Journal of Materials Engineering201947(11): 32-42.
66
LEI Y XIONG J LI R. Effect of inter layer idle time on thermal behavior for multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing[J].The International Journal of Advanced Manufacturing Technology201896:1355-1365.
67
HUI W J OUYANG J H KOVACEVIC R. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J].Journal of Materials Processing Technology2004148: 93-102.
68
LONGHURST W R STRAUSS A M COOK G E, et al. Investigation of force-controlled friction stir welding for manufacturing and automation[J].Proceedings of the Institution of Mechanical Engineers Part B2010224(6): 937-949.
69
李晗, 史清宇, 刘瞿, 等. 搅拌摩擦焊下压力控制系统的开发及在模拟非刚性环境下的验证试验[J].机械工程学报201551(22): 60-65.
LI H SHI Q Y LIU Q, et al. Development of pressure control system for friction stir welding and experiment in simulated non-rigid environment[J].Journal of Mechanical Engineering201551(22): 60-65.
70
RONG W WU Y J ZHANG Y, et al. Characterization and strengthening effects of gamma' precipitates in a high-strength casting Mg-15Gd-1Zn-0.4Zr (wt.%) alloy[J].Materials Characterization2017126: 1-9.
71
ZHANG J SONG B WEI Q, et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends[J].Journal of Materials Science & Technology201935(2): 270-284.
72
FROEND M VENTZKE V DORN F, et al. Microstructure by design: an approach of grain refinement and isotropy improvement in multi-layer wire-based laser metal deposition[J].Materials Science and Engineering: A2020772: 138635.
73
ZHU Y Y TANG H B LI Z, et al. Solidification behavior and grain morphology of laser additive manufacturing titanium alloys[J].Journal of Alloys and Compounds2019777: 712-716.
74
LIU H GONG N PANG L, et al. Microstructure and mechanical properties of as-cast AZ31 with the addition of Sb[J].Materials Science and Engineering: A2008497(1/2): 254-259.
PDF(12332 KB)

Accesses

Citation

Detail

Sections
Recommended

/