Regional planning of laser scanning path based on overhang structure recognition

Jun LI, Xiaohui HAN, Tingting LIU, Wenhe LIAO, Changdong ZHANG, Changchun ZHANG

Journal of Materials Engineering ›› 2023, Vol. 51 ›› Issue (11) : 120-133.

PDF(6167 KB)
Home Journals Journal of Materials Engineering
Journal of Materials Engineering

Abbreviation (ISO4): Journal of Materials Engineering      Editor in chief: Xiangbao CHEN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6167 KB)
Journal of Materials Engineering ›› 2023, Vol. 51 ›› Issue (11) : 120-133. DOI: 10.11868/j.issn.1001-4381.2022.000383
RESEARCH ARTICLE

Regional planning of laser scanning path based on overhang structure recognition

Author information +
History +

Abstract

Planning of laser scanning path is the key process strategy of selective laser melting (SLM) additive manufacturing technology. Combining the significant structural characteristics of a three-dimensional model to realize process path planning is an important measure to improve the forming quality of parts. An SLM regional path planning method based on suspension recognition was proposed. By identifying the suspension characteristic region of the three-dimensional model, combined with the contour offset algorithm, the forming region segmentation and scanning path planning are realized. The effects of scanning line angle, interlayer rotation and different offset distance on the forming quality of suspension structure characteristics were studied by means of numerical simulation and process test. The results show that when the overhanging edge is offset by a reasonable distances and the scanning strategy parallel to the overhanging edge is adopted in this area, the deformation and residual stress on the overhanging edge can be reduced by 54% and 73% at most.

Key words

selective laser melting / overhanging structure / feature recognition / numerical simulation

Cite this article

Download Citations
Jun LI , Xiaohui HAN , Tingting LIU , et al . Regional planning of laser scanning path based on overhang structure recognition[J]. Journal of Materials Engineering. 2023, 51(11): 120-133 https://doi.org/10.11868/j.issn.1001-4381.2022.000383

References

1
卢秉恒,李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化2013(4): 1-4.
LU B H LI D C. Additive manufacturing (3D printing) technology development[J]. Machinery Manufacturing and Automation2013(4): 1-4.
2
张学军,唐思熠,肇恒跃,等. 3D打印技术研究现状和关键技术[J]. 材料工程201644(2):122-128.
ZHANG X J TANG S Y ZHAO H Y, et al. Research status and key technologies of 3D printing technology [J]. Journal of Materials Engineering201644 (2): 122-128.
3
ZHANG Y MAJEED A MUZAMIL M, et al. Investigation for macro mechanical behavior explicitly for thin-walled parts of AlSi10Mg alloy using selective laser melting technique[J]. Journal of Manufacturing Processes202166: 269-280.
4
FANG Z C WU Z L HUANG C G, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts[J]. Optics & Laser Technology2020129: 106283.
5
MERCELIS P KRUTH J. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal200612(5): 254-265.
6
张佳琪,王敏杰,刘建业,等. 扫描策略对激光选区熔化成型18Ni300马氏体时效钢打印质量和性能的影响[J]. 材料工程202048(10):105-113.
ZHANG J Q WANG M J LIU J Y, et al. Effect of scanning strategy on printing quality and properties of 18Ni300 maraging steel formed by laser selective melting [J]. Journal of Materials Engineering202048 (10): 105-113.
7
陈帅,陶凤和,贾长治,等. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程202250(3): 122-130.
CHEN S TAO F H JIA C Z, et al. Effect of shape angle on microstructure and properties of 4Cr5MoSiV1 steel melted by selective laser [J]. Journal of Materials Engineering202250 (3): 122-130
8
YADROITSEV I SHISHKOVSKY I BERTRAND P, et al. Manufacturing of fine-structured 3D porous filter elements by selective laser melting[J]. Applied Surface Science2009255(10): 5523-5527.
9
何洪苇. 基于SLM的自支撑悬垂结构的工艺约束研究与构型设计[D]. 大连: 大连理工大学, 2019.
HE H W. Research on process constraints and configuration design of self-supported overhanging structure based on SLM[D]. Dalian: Dalian University of Technology, 2019.
10
DURSUN G PEHLIVANOGULLARI B, SEN C, et al. An investigation upon overhang zones by using finite element modelling and in-situ monitoring systems[J]. Procedia CIRP202093: 1253-1258.
11
CHEN H Y GU D D XIONG J P, et al. Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting[J]. Journal of Materials Processing Technology2017250: 99-108.
12
LE K Q WONG C H CHUA K H G,et al. Discontinuity of overhanging melt track in selective laser melting process[J]. International Journal of Heat and Mass Transfer2020162: 120284.
13
刘婷婷,张长东,廖文和, 等. 激光选区熔化成形悬垂结构熔池行为试验分析[J]. 中国激光201643(12): 76-82.
LIU T T ZHANG C D LIAO W H,et al. Experimental analysis on molten pool behavior of overhanging structure formed by selective laser melting[J]. Chinese Journal of Lasers201643(12): 76-82.
14
WANG D YANG Y Q YI Z H, et al. Research on the fabricating quality optimization of the overhanging surface in SLM process[J]. The International Journal of Advanced Manufacturing Technology201365(9/12): 1471-1484.
15
SHI Q M GU D D XIA M J, et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites[J]. Optics & Laser Technology201684: 9-22.
16
段声勤,刘婷婷,廖文和, 等. 悬垂圆孔激光选区熔化成形质量研究[J]. 中国激光201845(4): 190-198.
DUAN S Q LIU T T LIAO W H, et al. Study on the quality of overhanging circular hole by laser selective melting[J]. Chinese Journal of Lasers201845(4): 190-198.
17
王朋. 金属3D打印悬垂结构和高效成形工艺试验研究[D]. 北京: 北京工商大学, 2019.
WANG P. Experimental study on metal 3D printing drape structure and efficient forming process[D]. Beijing: Beijing Technology and Business University, 2019.
18
陈宾宾,姜献峰,董星涛, 等. 选区激光熔化水平悬垂面成形质量影响因素分析[J]. 应用激光202141(4): 738-744.
CHEN B B JIANG X F DONG X T, et al. Analysis of factors affecting forming quality of horizontal overhanging surface by selective laser melting[J]. Application of Laser202141(4): 738-744.
19
MERTENS R CLIJSTERS S KEMPEN K, et al. Optimization of scan strategies in selective laser melting of aluminum parts with downfacing areas[J]. Journal of Manufacturing Science and Engineering2014136(6): 061012.
20
赵安安,王洲涛,汪俊. 基于飞机壁板特征的扫描路径生成方法研究[J]. 南京航空航天大学学报202153(3): 344-349.
ZHAO A A WANG Z T WANG J. Research on scanning path generation method based on aircraft panel features [J] Journal of Nanjing University of Aeronautics and Astronautics202153(3): 344-349.
21
邓洋洋,李维诗.薄壁件选择性激光熔融的分区扫描路径规划[J].图学学报202243(1):149-155.
DENG Y Y LI W S. Zonal scanning path planning for selective laser melting of thin-walled parts [J]. Journal of Graphics202243 (1): 149-155.
22
杨光,李雨航,周思雨,等. 基于特征区域的激光增材分区扫描热力耦合研究[J]. 中国激光202148(10): 149-159.
YANG G LI Y H ZHOU S Y, et al. Study on the thermal mechanical coupling of laser additive zone scanning based on characteristic region [J] China Laser202148(10): 149-159.
23
徐仁俊. 基于选择性激光熔化技术的有限元分析和扫描路径优化[D].重庆:重庆大学, 2016.
XU R J. Finite element analysis and scanning path optimization based on selective laser melting technology [D]. Chongqing:Chongqing University, 2016.
24
卞宏友,左士刚,曲伸,等. 激光沉积成形分区环形扫描路径生成算法[J]. 激光与光电子学进展. 201956(2): 163-169.
BIAN H Y ZUO S G QU S, et al. Generation algorithm of zonal circular scanning path for laser deposition forming [J]. Laser & Optoelectronics Progress201956(2): 163-169.
25
KING W ANDERSON A T FERENCZ R M, et al. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory[J]. Materials Science & Technology201531(8):957-968.
26
DEPOND P J GUSS G, LY S, et al. In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry[J]. Materials & Design2018154: 347-359.
27
史建军. 悬垂结构激光内送粉熔覆成形工艺及机理研究[D]. 苏州:苏州大学, 2018.
SHI J J. Research on the melting molding process and mechanism of laser internal powder feeding of overhang structure[D]. Suzhou: Soochow University, 2018.
28
ROBERTS I A WANG C J ESTERLEIN R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. International Journal of Machine Tools and Manufacture200949(12/13): 916-923.
29
CHEN C P YIN J ZHU H H, et al. Effect of overlap rate and pattern on residual stress in selective laser melting[J]. International Journal of Machine Tools and Manufacture2019145: 103433.
30
ZOU S XIAO H B YE F P, et al. Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting[J]. Results in Physics202016: 103005.
31
SIAO Y H WEN C D. Examination of molten pool with Marangoni flow and evaporation effect by simulation and experiment in selective laser melting[J]. International Communications in Heat and Mass Transfer2021125: 105325.
32
YIN J ZHU H H KE L D, et al. Simulation of temperature distribution in single metallic powder layer for laser micro-sintering[J]. Computational Materials Science201253(1): 333-339.
33
杨鑫,王犇,谷文萍,等. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程202149(4):52-62.
YANG X WANG B GU W P, et al. Application and research status of numerical simulation of metal laser 3D printing process [J]. Journal of Materials Engineering202149 (4): 52-62.
34
LI Y L ZHOU K TAN P F, et al. Modeling temperature and residual stress fields in selective laser melting[J]. International Journal of Mechanical Sciences2018136: 24-35.
35
XIAO Z X CHEN C P ZHU H H, et al. Study of residual stress in selective laser melting of Ti6Al4V[J]. Materials & Design2020193: 108846.
36
HUSSEIN A HAO L YAN C Z, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials & Design201352: 638-647.
37
LIU S W ZHU H H PENG G Y, et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design2018142: 319-328.
38
MACHIRORI T LIU F Q YIN Q Y, et al. Spatiotemporal variations of residual stresses during multi-track and multi-layer deposition for laser powder bed fusion of Ti-6Al-4V[J]. Computational Materials Science2021195: 110462.
39
BIAN P Y SHI J LIU Y, et al. Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel[J]. Optics & Laser Technology2020132: 106477.
40
GU D D HE B B. Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy[J]. Computational Materials Science2016117: 221-232.
41
ANTONY K ARIVAZHAGAN N SENTHILKUMARAN K. Numerical and experimental investigations on laser melting of stainless steel 316L metal powders[J]. Journal of Manufacturing Processes201416(3): 345-355.
42
LI C FU C H GUO Y B, et al. A multiscale modeling approach for fast prediction of part distortion in selective laser melting[J]. Journal of Materials Processing Technology2016229: 703-712.
43
ZHANG W TONG M HARRISON N M. Scanning strategies effect on temperature, residual stress and deformation by multi-laser beam powder bed fusion manufacturing[J]. Additive Manufacturing202036(5):101507.
44
ZHANG T LI H LIU S, et al. Evolution of molten pool during selective laser melting of Ti-6Al-4V[J]. Journal of Physics D: Applied Physics201952(5): 55302.
45
CHENG B SHRESTHA S CHOU K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[J]. Additive Manufacturing201612: 240-251.
46
SONG J WU W H ZHANG L, et al. Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting[J]. Optik2018170: 342-352.
47
SHI Y J SHEN H YAO Z Q, et al. Temperature gradient mechanism in laser forming of thin plates[J]. Optics & Laser Technology200739(4): 858-863.
48
ALI H, GHADBEIGI H MUMTAZ K. Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V[J]. Materials Science and Engineering2018712: 175-187.
49
ZHAO X IYER A PROMOPPATUM P, et al. Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products[J]. Additive Manufacturing201714: 126-136.
50
PARRY L A ASHCROFT I A WILDMAN R D. Geometrical effects on residual stress in selective laser melting[J]. Additive Manufacturing201925: 166-175.
51
宋剑锋, 宋有年, 王文武, 等. 金属粉末选区激光熔化成形表面粗糙度预测及控制方法研究[J]. 中国激光202249(2): 0202008.
SONG J F SONG Y N WANG W W, et al. Prediction and control on the surface roughness of metal powder using selective laser melting[J].Chinese Journal of Lasers202249(2): 0202008.
PDF(6167 KB)

Accesses

Citation

Detail

Sections
Recommended

/