Effect of solid solution temperature on microstructure and properties of 2050 Al-Li alloy extruded bars

Qingfeng ZHU, Hao WANG, Yang GAO, Yifei LIN, Yubo ZUO

Journal of Materials Engineering ›› 2023, Vol. 51 ›› Issue (11) : 71-78.

PDF(6183 KB)
Home Journals Journal of Materials Engineering
Journal of Materials Engineering

Abbreviation (ISO4): Journal of Materials Engineering      Editor in chief: Xiangbao CHEN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6183 KB)
Journal of Materials Engineering ›› 2023, Vol. 51 ›› Issue (11) : 71-78. DOI: 10.11868/j.issn.1001-4381.2022.000803
RESEARCH ARTICLE

Effect of solid solution temperature on microstructure and properties of 2050 Al-Li alloy extruded bars

Author information +
History +

Abstract

Under certain solid solution time conditions, the solid solution temperature determines the degree of supersaturation and recrystallisation of the matrix after quenching, and is an important factor in enhancing the performance of the material after aging treatment. Through the solid solution heat treatment of 2050 Al-Li alloy extruded bar at different temperatures for 2 h and artificial aging treatment at 170 ℃ for 40 h, combined with a variety of property testing methods and microstructure observation methods, the effect of solid solution temperature on the microstructure and properties of 2050 Al-Li alloy extruded bar was studied. The results show that the residual phase is continuously redissolved with the increase of the solid solution temperature, and the residual phase is mainly iron-containing phase when the solid solution temperature is 525 ℃.The slight overheating structure appears in the bar when the solid solution temperature is 550 ℃, and the serious overheating structure appears in the bar when the solid solution temperature reaches 570 ℃. Local recrystallization occurs when the bar is heated to 500 ℃, and complete recrystallization occurs when the solid solution temperature reaches 570 ℃. When the 2050 Al-Li alloy extruded bars are solution treated at different temperature (450-550 ℃) and aged at 170 ℃ for 40 h, the number of θ′ and T1 phases increases with the increase of solid solution temperature, and the strength increases rapidly and then slowly,when the solution treatment temperature is 550 °C, the yield strength and tensile strength of extruded rods are the highest, which are 505 MPa and 567 MPa, respectively; the elongation decreases rapidly at first and then remains stable with the increase of solid solution temperature, decreasing from 13.4% at 450 ℃ to 10.7%-10.4% at 500-550 ℃.

Key words

2050 Al-Li alloy / solid solution / recrystallization / overheating / mechanical property / precipitate phase

Cite this article

Download Citations
Qingfeng ZHU , Hao WANG , Yang GAO , et al . Effect of solid solution temperature on microstructure and properties of 2050 Al-Li alloy extruded bars[J]. Journal of Materials Engineering. 2023, 51(11): 71-78 https://doi.org/10.11868/j.issn.1001-4381.2022.000803

References

1
PETERS M BUNK W. Low density, high-stiffness, aluminum-lithium materials[J]. Journal of Aircraft199027(5):456-458.
2
WILLIAMS J C STARKE E A.Progress in structural materials for aerospace systems[J].Acta Materialia200351(19):5775-5799.
3
BODILY B HEINIMANN M BRAY G,et al. Advanced aluminum and aluminum-lithium solutions for derivative and next generation aerospace structures[J]. SAE Technical Paper2012.
4
RIOJA R J LIU J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A201243(9):3325-3337.
5
KABLOV E N ANTIPOV V V OGLODKOVA J S,et al. Development and application prospects of aluminum-lithium alloys in aircraft and space technology[J]. Metallurgist202165(1/2):72-81.
6
DURSUN T SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design201456:862-871.
7
LEQUEU P SMITH K P DANIÉLOU A. Aluminum-copper-lithium alloy 2050 developed for medium to thick plate[J]. Journal of Materials Engineering and Performance200919(6):841-847.
8
LEQUEU P.Advances in aerospace aluminum[J].Advanced Materials and Processes20089(2):47-49.
9
LEQUEU P LASSINCE P WARNER T. Aluminum alloy development for the airbus A380 -Part 2[J]. Advanced Materials & Processes2007165(7):41-44.
10
WARNER T. Recently-developed aluminium solutions for aerospace applications[J]. Materials Science Forum2006519/521:1271-1278.
11
HAFLEY R DOMACK M HALES S. Evaluation of aluminum alloy 2050-T84 microstructure and mechanical properties at ambient and cryogenic temperatures[R]. Washington:National Aeronautics and Space Administration,2011.
12
LI M WIAME F SEYEUX A,et al. Effect of thermal oxidation on surface chemistry and elemental segregation of Al-Cu-Li alloy[J]. Applied Surface Science2020534:147633.
13
ANTUNES F V SERRANO S BRANCO R, et al. Fatigue crack growth in the 2050-T8 aluminium alloy[J]. International Journal of Fatigue2018115:79-88.
14
WAGNER V VISSIO A,DUC E,et al. Relationship between cutting conditions and chips morphology during milling of aluminium Al-2050[J]. The International Journal of Advanced Manufacturing Technology201582:1881-1897.
15
GUÉRIN M ANDRIEU E ODEMER G,et al. Effect of varying conditions of exposure to an aggressive medium on the corrosion behavior of the 2050 Al-Cu-Li alloy[J]. Corrosion Science201485(1):455-470.
16
ROULEAU B PEYRE P BREUILS J,et al. Characterization at a local scale of a laser-shock peened aluminum alloy surface[J]. Applied Surface Science2011257(16):7195-7203.
17
SIDHAR H MISHRA R S REYNOLDS A P,et al. Impact of thermal management on post weld heat treatment efficacy in friction stir welded 2050-T3 alloy[J]. Journal of Alloys and Compounds2017722:330-338.
18
AVETTAND M N TAILLARD R.Heterogeneity of the nugget microstructure in a thick 2050 Al friction-stirred weld[J]. Metallurgical and Materials Transactions A201446(1):300-314.
19
ZHU R H LIU Q LI J F,et al. Flow curve correction and processing map of 2050 Al-Li alloy[J]. Transactions of Nonferrous Metals Society of China201828(3):404-414.
20
ZHU R H LIU Q LI J F,et al. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression[J]. Journal of Alloys and Compounds2015650:75-85.
21
LI H P LIU X D SUN Q,et al. Superplastic deformation mechanisms in fine-grained 2050 Al-Cu-Li alloys[J]. Materials202013(12):2705.
22
LU D D NING H DU Y,et al. Detailed investigation of quench sensitivity of 2050 Al-Cu-Li alloy by interrupted quenching method and novel end quenching method[J]. Journal of Alloys and Compounds2021888:161450.
23
冯朝辉,钟立伟,高文理,等. 时效制度对2050铝锂合金力学性能及断裂行为的影响[J]. 金属热处理201944(9):108-112.
FENG C H ZHONG L W GAO W L,et al. Effect of aging on mechanical properties and fracture behavior of 2050 Al-Li alloy[J]. Heat Treatment of Metals201944(9):108-112.
24
吴秀亮,袁志山,谢优华,等. 固溶对Al-Cu-Li-X合金组织和性能的影响[J]. 航空材料学报200929(3):1-6.
WU X L YUAN Z S XIE Y H,et al. Effects of solution treatment on microstructures and properties of Al-Cu-Li-X alloy[J]. Journal of Aeronautical Materials200929(3):1-6.
25
李华冠,陶杰,孙中刚,等. 固溶处理对新型铝锂合金组织和性能的影响[J]. 金属热处理201338(3):74-76.
LI H G TAO J SUN Z G,et al. Effects of solution treatment on microstructure and properties of a aluminum-lithium alloy[J]. Heat Treatment of Metals201338(3):74-76.
26
王华,尹登峰,余鑫祥,等. 固溶处理对Al-Li-Cu-Mg-Ag-Zr合金组织与性能的影响[J]. 矿冶工程201131(6):98-102.
WANG H YIN D F YU X X, et al. Effects of solution treatment on the microstructure and mechanical properties of Al-Li-Cu-Mg-Ag-Zr alloy[J]. Mining and Metallurgical Engineering201131(6):98-102.
27
任鹏,高文理,朱聪聪,等. 固溶处理对2A66铝锂合金力学性能和晶间腐蚀性能的影响[J].热加工工艺201948(24):136-140.
REN P GAO W L ZHU C C,et al. Effects of solution treatment on mechanical properties and intergranular corrosion properties of 2A66 Al-Li alloy[J]. Hot Working Technology201948(24):136-140.
28
乔勇,冯朝辉,柴丽华,等. 固溶处理对新型铝锂合金X2A66组织和性能的影响[J]. 热加工工艺201746(2):208-211.
QIAO Y FENG C H CHAI L H,et al. Effects of solution treatment on microstructure and properties of novel Al-Li alloy X2A66[J]. Hot Working Technology201746(2):208-211.
29
NIZERY E PROUDHON H BUFFIERE J Y,et al. Three-dimensional characterization of fatigue-relevant intermetallic particles in high-strength aluminium alloys using synchrotron X-ray nanotomography[J]. Philosophical Magazine201595(25):2731-2746.
30
JIA S F ZHAN L H ZHANG J. Influence of solid solution treatment on microstructure and mechanical properties of 2219 aluminium alloy[J].Materials Research Innovations201418():52-58.
Suppl 2
31
张茁,陈康华. 固溶处理对Al-Zn-Mg-Cu铝合金电导率的影响[J]. 粉末冶金材料科学与工程20049(1):79-83.
ZHANG Z CHEN K H. Effect of solution heat-treating on electrical conductivity of Al-Zn-Mg-Cu aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy20049(1):79-83.
32
THOMPSON G E NOBLE B. Resistivity of Al-Cu-Li alloys during T1(Al2CuLi) precipitation[J]. Metal Science Journal20137(1):32-35.
33
YAMAMOTO A TSUBAKINO H NOZATO R. Resistivity study of aging in Al-Li-Cu alloys[J]. Materials Transactions,JIM199536(12):1447-1454.
34
KHAN A K ROBINSON J S. Effect of cold compression on precipitation and conductivity of an Al-Li-Cu alloy[J]. Journal of Microscopy2008232(3):534-538.
35
BUCK O BRASCHE L J H SHIELD J E,et al. Nondestructive detection of the T1 phase in Al-Li alloys[J]. Scripta Metallurgica198923(2):183-187.
36
ZHANG Q Y ZHANG C S LIN J,et al. Microstructure analysis and low-cycle fatigue behavior of spray-formed Al-Li alloy 2195 extruded plate[J]. Materials Science and Engineering:A2019742:773-787.
PDF(6183 KB)

Accesses

Citation

Detail

Sections
Recommended

/