Effects of hot rolling process on mechanical properties and corrosion resistance of Sn-containing ferritic stainless steel

Yang BAI, Yandong LIU, Tong HE, Fangyuan SHAO, Fangce LIU

Journal of Materials Engineering ›› 2023, Vol. 51 ›› Issue (11) : 161-170.

PDF(4988 KB)
Home Journals Journal of Materials Engineering
Journal of Materials Engineering

Abbreviation (ISO4): Journal of Materials Engineering      Editor in chief: Xiangbao CHEN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4988 KB)
Journal of Materials Engineering ›› 2023, Vol. 51 ›› Issue (11) : 161-170. DOI: 10.11868/j.issn.1001-4381.2023.000025
RESEARCH ARTICLE

Effects of hot rolling process on mechanical properties and corrosion resistance of Sn-containing ferritic stainless steel

Author information +
History +

Abstract

Cr-Ni resource-saving Sn-containing ferritic stainless steel (FSS) was taken as the research object. The microstructure evolution and properties change of the experimental steel under different hot rolling processes were explored by means of optical microscope(OM), electron backscattering diffraction(EBSD), X-ray diffraction(XRD), room temperature tensile test, electrochemical corrosion test, etc. The results show that when the finishing rolling temperature (FRT) is in the range of 940-730 ℃, properly reducing the FRT has a significant role in refining the grains of hot-rolled and annealed sheets and final cold-rolled and annealed sheets, as well as increasing the orientation density of recrystallization texture, and thus the yield strength, tensile strength and elongation are significantly increased. When the FRT is 800 ℃, the tensile strength is 509 MPa, the yield strength is 331 MPa, and the elongation reaches a maximum of 42%, and meanwhile, the maximum cupping value and plastic strain ratio are obtained, leading to the best mechanical properties. In addition, the pitting potential and self-corrosion potential are increased, while the corrosion current density and corrosion rate are decreased by properly reducing the FRT. When the FRT is 800 ℃, the pitting potential reaches the maximum, the corrosion current density reaches the minimum and corrosion rate reaches the lowest, thus the optimum corrosion resistance is obtained in the steel. The properties of Sn-containing FSS are significantly improved compared with SUS430 FSS by optimizing the hot rolling process.

Key words

ferritic stainless steel / mechanical property / corrosion resistance / microstructure / hot rolling

Cite this article

Download Citations
Yang BAI , Yandong LIU , Tong HE , et al . Effects of hot rolling process on mechanical properties and corrosion resistance of Sn-containing ferritic stainless steel[J]. Journal of Materials Engineering. 2023, 51(11): 161-170 https://doi.org/10.11868/j.issn.1001-4381.2023.000025

References

1
康喜范. 铁素体不锈钢[M]. 北京:冶金工业出版社, 2012.
KANG X F. Ferritic stainless steel[M]. Beijing: Metallurgical Industry Press, 2012.
2
陈虎, 王杜, 沈正祥, 等. 钛元素对低铬铁素体不锈钢电化学腐蚀性能的影响[J].金属热处理201843(6): 11-15.
CHEN H WANG D SHEN Z X, et al. Influence of Ti on electrochemical corrosion properties of low chromium ferritic stainless steels[J]. Heat Treatment of Metals201843(6):11-15.
3
HAN J P JIANG Z H LI Y. Investigation of corrosion resistance property and passivation film structure of tin containing stainless steel [J]. Materials Research Innovations201418: 76-78.
4
张向军. 含锡铁素体不锈钢组织性能及耐蚀性能研究[D]. 沈阳:东北大学,2017
ZHANG X J. Research on microstructure, property and corrosion resistance of Sn-bearing ferritic stainless steel [D]. Shenyang: Northeastern University, 2017.
5
LI Y HAN J P JIANG Z H, et al. Effect of tin addition on the microstructure and properties of ferritic stainless steel [J]. International Journal of Minerals, Metallurgy and Materials201522(1): 37-44.
6
LUO H SU H Z LI B S, et al. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment [J]. Applied Surface Science2018439: 232-239.
7
HE T BAI Y LIU X T, et al. Effect of Sn micro-alloying on recrystallization nucleation and growth processes of ferritic stainless steels [J]. Metals and Materials International201824(4):789-801.
8
ZHANG C ZHANG L W LIU Z Y. Improvement of surface ridging resistance of an ultra-purified ferritic stainless steel by optimizing hot rolling condition [J]. Acta Metallurgica Sinica (English Letters)201629(6): 561-567.
9
GAO F LIU Z Y LIU H T, et al. Texture evolution and formability under different hot rolling conditions in ultra purified 17%Cr ferritic stainless steels [J]. Materials Chracterization201375: 93-100.
10
任娟红,陈安忠,王长波,等. 终轧温度对443铁素体不锈钢组织、织构及成形性能的影响[J].金属热处理202146(1):200-204.
REN J H CHEN A Z WANG C B, et al. Effect of finishing rolling temperature on microstructure, texture and formability of ferritic stainless steel 443[J]. Heat Treatment of Metals202146(1):200-204.
11
ZHANG C LIU Z Y WANG G D. Effects of hot rolled shear bands on formability and surface ridging of an ultra purified 21%Cr ferritic stainless steel [J]. Journal of Materials Processing Technology2011211(6): 1051-1059.
12
刘海涛,马东旭,刘振宇,等. 终轧温度对超纯铁素体不锈钢组织、织构及成形性能的影响[J]. 钢铁研究学报201022(8): 31-35.
LIU H T MA D X LIU Z Y, et al. Effect of finishing temperature on microstructure, texture and formability of ultra-purified ferritic stainless steel[J]. Journal of Iron and Steel Research201022(8): 31-35.
13
MA X G ZHAO J W DU W, et al. Effects of rolling processes on ridging generation of ferritic stainless steel [J]. Materials Characterization2018137: 201-211.
14
束德林.工程材料力学性能[M]. 北京:机械工业出版社, 2016.
SHU D L. Mechanical properties of engineering materials[M]. Beijing: China Machine Press, 2016.
15
韩纪鹏. 含锡铁素体不锈钢的制备工艺及组织性能研究[D]. 沈阳:东北大学,2015.
HAN J P. Manufacture technology, microstructure and properties of tin-bearing ferritic stainless steel [D]. Shenyang: Northeastern University, 2015.
16
雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.
YONG Q L. Second phases in structural steels [M].Beijing: Metallurgical Industry Press, 2006.
17
YAZAWA Y MURAKI M KATO Y, et al. Effect of chromium content on relationship between r-value and {111} recrystallization texture in ferritic steel [J]. ISIJ International200343(10): 1647-1651.
18
LI H X YU H ZHOU T, et al. Effect of tin on the corrosion behavior of sea-water corrosion-resisting steel [J]. Materials and Design201584: 1-9.
19
魏欣, 董俊华, 佟健, 等. 温度对 Cr26Mo1 超纯高铬铁素体不锈钢在 3.5%NaCl溶液中耐点蚀性能的影响[J]. 金属学报201248(5): 502-507.
WEI X DONG J H TONG J, et al. Influence of temperature on pitting corrosion resistance of Cr26Mo1 ultra high chromium ferrite stainless steel in 3.5%NaCl solution [J]. Acta Metallurgy Sinica201248(5): 502-507.
20
杨永超. 含锡铁素体不锈钢力学性能及耐腐蚀性能的研究[D].沈阳:东北大学,2014.
YANG Y C. Study of mechanical properties and corrosion resistance of tin-containing ferritic stainless steel [D]. Shenyang:Northeastern University, 2014.
21
RALSTON K D BIRBILIS N DAVIES C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scripta Materialia201063(12): 1201-1204.
22
罗检,张勇,钟庆东,等. 晶粒度对一些常用金属耐腐蚀性能的影响[J].腐蚀与防护201233(4): 349-352.
LUO J ZHANG Y ZHONG Q D, et al. Influence of grain size on corrosion resistance of commonly used metals [J].Corrosion &Production201233(4): 349-352.
23
FATTAH A A VAFAEIAN S. Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott-Schottky analysis and EIS measurements [J]. Journal of Alloys and Compounds2015639:301-307.
24
田文明,巢昺轩,李智勇,等. 晶粒尺寸影响金属钝化行为的研究进展[J].失效分析与预防201813(2): 130-136.
TIAN W M CHAO B X LI Z Y, et al. Effects of grain size on passivation of metals:A[J]. Failure Analysis and Prevention201813(2):130-136.
PDF(4988 KB)

Accesses

Citation

Detail

Sections
Recommended

/