Abbreviation (ISO4): Journal of Materials Engineering
Editor in chief: Xiangbao CHEN
Journal of Materials Engineering >
Progress in thermal and mechanical properties and interfacial compatibility of aerogel/ fiber composites
Received date: 2022-06-30
Revised date: 2023-02-11
Online published: 2024-03-10
Aerogel/fiber composites have shown a wide range of applications in aerospace, defence, environmental management and biomedicine due to their high porosity, low bulk density, high specific surface area and low thermal conductivity.The thermal and mechanical properties and interfacial compatibility of aerogel/fiber composites was reviewed, the heat transfer mechanism, mechanical property enhancement mechanism and interfacial compatibility bonding mechanism was introduced, and the effect of different fiber embedding on the final properties of the composites considering different fiber volume fractions and fiber multiscale i.e. different fiber diameters (aspect ratio) and pore diameters between fibers was summarized in this paper. Finally, the prospective future of the research directions of aerogel/fiber composites were proposed, including heat resistance, improved mechanical properties and material interface bonding.
Yu FU , Yang WANG , Ming CAI . Progress in thermal and mechanical properties and interfacial compatibility of aerogel/ fiber composites[J]. Journal of Materials Engineering, 2023 , 51(11) : 1 -13 . DOI: 10.11868/j.issn.1001-4381.2022.000526
图5 纤维直径对气凝胶复合材料隔热性能的影响以及热导率随纤维含量变化的趋势(a)直径在2~5 μm之间在300 K和环境压力下的隔热性能[33];(b)直径为2~4 μm玻璃纤维[34];(c)直径为12 μm玻璃纤维[35] Fig.5 Effect of fiber diameter on thermal insulation properties of aerogel composites and trend of thermal conductivity with fiber content (a) insulation of 2-5 μm in diameter at 300 K and ambient pressure [33];(b) glass fibers with diameters of 2-4 µm[34]; (c)glass fibers with diameters of 12 µm [35] |
图14 复合材料的微观结构[60](a)硅气凝胶复合材料断裂处突出的芳纶纤维;(b)芳纶纤维被气凝胶碎片包围; (c)被气凝胶纳米颗粒包裹的单一芳纶纤维;(d)芳纶纤维/气凝胶中气凝胶基体的纳米孔结构 Fig.14 Microstructures of the composites[60] (a)aramid fibers protruding from the fracture of a silica aerogel composite;(b)aramid fibers surrounded by aerogel fragments; (c)single aramid fiber encapsulated by aerogel nanoparticles;(d)nanopore structure of the aerogel matrix in aramid fiber/airgel |
图15 芳纶纤维和硅气凝胶之间的界面结合[61](a)芳纶/气凝胶中的单一芳纶纤维;(b)纤维表面覆盖着气凝胶;(c)气凝胶基体的多孔纳米结构;(d)纤维表面的气凝胶纳米颗粒 Fig.15 Interfacial bonding between aramid fibers and silica aerogel[61] (a)single aramid fiber in aramid/ aerogel;(b)fiber surface covered with aerogel;(c)porous nanostructures of aerogel matrix;(d)aerogel nanoparticles on fiber surfaces |
1 |
|
2 |
朱浩彤,刘玲伟,闫铭,等.纤维气凝胶的分类、制备工艺及应用现状[J].材料导报,2021,35(23):23057-23067.
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
孙达,周长灵,陈恒,等.二氧化硅气凝胶的研究现状及应用前景[J].现代技术陶瓷,2015,36(4):24-31.
|
27 |
董志军,李轩科,袁观明.莫来石纤维增强SiO2气凝胶复合材料的制备及性能研究[J].化工新型材料,2006(7):58-61.
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
郭慧,刘圆圆,宋寒,等.纤维对酚醛气凝胶材料性能的影响[J].材料导报,2020,34():1513-1515.
|
37 |
崔崧,黄宝宗,张立洲,等.层间短纤维的桥联和增韧分析[J].计算力学学报,2004,21(2):216-221.
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
|
48 |
|
49 |
|
50 |
邵再东,张颖,程璇.新型力学性能增强二氧化硅气凝胶块体隔热材料[J].化学进展,2014,26(8):1329-1338.
|
51 |
|
52 |
|
53 |
张鸿宇,钱震,牛波,等.低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制[J].复合材料学报,2022,39(8):3663-3673.
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
|
61 |
|
/
〈 |
|
〉 |