Abbreviation (ISO4): Journal of Materials Engineering
Editor in chief: Xiangbao CHEN
Journal of Materials Engineering >
Characteristics of interfacial wettability and adhesiveness between ammonium perchlorate and azide-polyether
Received date: 2023-02-23
Revised date: 2023-08-11
Online published: 2024-03-10
In order to improve the interfacial wettability and adhesiveness between matrix and filler in the preparation process of azide-polyether based solid propellant and the processing property of the slurry, the effects of the kind of bonding agents and plasticizers and the ratio of plasticizers on the binding energy of 3, 3-diazide methyl epoxy butane and tetrahydrofuran copolymer (PBT) based matrix and ammonium perchlorate (AP) were calculated by using molecular dynamics calculation method. Three main crystal planes (011)/(201)/(210) of AP were considered. The results show that the rational plasticizers, plasticizer ratios and bonding agents can effectively improve the interface wetting characteristics of ammonium perchlorate and azide-polyether based solid propellants.The binding energy between ammonium perchlorate and PBT matrix system was the highest when dibutyl phthalate (DBP) is used as plasticizer, BUNE is used as bonding agent, and the plasticizer ratio is 0.6. The experimental results of contact angle were used to verify the calculation results. The main factors affecting the characteristics of the interfacial wettability between ammonium perchlorate and azide-polyether in solid propellant slurry were obtained, providing a guidance for improving the interface wettability and adhesiveness, and also the processing property of propellants.
Haiyang YU , Lei DENG , Chen CHEN , Xing ZHOU . Characteristics of interfacial wettability and adhesiveness between ammonium perchlorate and azide-polyether[J]. Journal of Materials Engineering, 2023 , 51(11) : 94 -102 . DOI: 10.11868/j.issn.1001-4381.2023.000104
图1 结构优化后的黏合剂、增塑剂和键合剂分子模型(a)PBT分子链;(b)BDNPF;(c)BDNPA;(d)DBP;(e)Bu-NENA;(f)BUNE;(g)DPE;(h)三乙醇胺(T313键合剂主要成分)Fig.1 Molecular models of binders,plasticizers and bonding agents after optimized(a)PBT co-polymer;(b)BDNPF;(c)BDNPA;(d)DBP;(e)Bu-NENA;(f)BUNE;(g)DPE;(h)triethanolamine(main component of T313) |
表1 不同基体体系混合物无定型分子模型参数Table 1 Parameters of amorphous molecular models for mixtures of different matrix systems |
Blend | Ratio ofplasticizer | Mass fraction ofbonding agent/% | Number of molecules | Initial density/(g·cm-3) |
---|---|---|---|---|
PBT/A3(PBT/BDNPF/BDNPA) | 1.0 | — | 3/9/9 | 1.28 |
PBT/DBP | 0.2 | — | 3/11 | 1.13 |
PBT/DBP | 0.6 | — | 3/31 | 1.05 |
PBT/DBP | 1.0 | — | 3/52 | 1.05 |
PBT/Bu-NENA | 1.0 | — | 3/49 | 1.20 |
PBT/DBP/BUNE | 1.0 | 5 | 3/52/8 | 1.05 |
PBT/DBP/DPE | 1.0 | 5 | 3/52/9 | 1.05 |
PBT/DBP/T313 | 1.0 | 5 | 3/52/10 | 1.05 |
图2 不同基体体系混合物无定型分子模型(a)PBT/A3;(b)PBT/Bu-NENA;(c)PBT/DBP(增塑比0.2);(d)PBT/DBP(增塑比0.6);(e)PBT/DBP(增塑比1.0);(f)PBT/DBP/BUNE;(g)PBT/DBP/DPE;(h)PBT/DBP/T313Fig.2 Amorphous molecular models of mixtures of different matrix systems(a)PBT/A3;(b)PBT/Bu-NENA;(c)PBT/DBP(ratio of plasticizer is 0.2);(d)PBT/DBP(ratio of plasticizer is 0.6);(e)PBT/DBP(ratio of plasticizer is 1.0);(f)PBT/DBP/BUNE;(g)PBT/DBP/DPE;(h)PBT/DBP/T313 |
图3 不同基体体系与(210)AP晶面相互作用计算模型 (a)PBT/A3;(b)PBT/Bu-NENA;(c)PBT/DBP(增塑比0.2);(d)PBT/DBP(增塑比0.6);(e)PBT/DBP(增塑比1.0);(f)PBT/DBP/BUNE;(g)PBT/DBP/DPE;(h)PBT/DBP/T313Fig.3 Calculation model of the interaction energy between different matrix systems and (210)AP crystal planes(a)PBT/A3;(b)PBT/Bu-NENA;(c)PBT/DBP(ratio of plasticizer is 0.2);(d)PBT/DBP(ratio of plasticizer is 0.6);(e)PBT/DBP(ratio of plasticizer is 1.0);(f)PBT/DBP/BUNE;(g)PBT/DBP/DPE;(h)PBT/DBP/T313 |
图4 不同种类增塑剂的PBT基体体系与(210)AP晶面计算完成时相互作用状态(a)PBT/A3;(b)PBT/Bu-NENA;(c)PBT/DBPFig.4 Interaction between PBT matrix system of different plasticizers and (210)AP crystal plane after calculated (a)PBT/A3;(b)PBT/Bu-NENA;(c)PBT/DBP |
表2 增塑剂种类对基体体系与AP晶面的相互作用影响Table 2 Influence of plasticizers in the interaction force between AP and PBT/plasticizer mixtures |
Mixture | Crystal plane | E el/(J·m-2) | E vwd/(J·m-2) | E bind/(J·m-2) |
---|---|---|---|---|
PBT/A3 | (011) | 0.153 | 0.133 | 0.278 |
(201) | 0.120 | 0.143 | 0.268 | |
(210) | 0.120 | 0.146 | 0.272 | |
PBT/DBP | (011) | 0.153 | 0.133 | 0.293 |
(201) | 0.130 | 0.150 | 0.286 | |
(210) | 0.126 | 0.156 | 0.289 | |
PBT/Bu-NENA | (011) | 0.133 | 0.134 | 0.274 |
(201) | 0.147 | 0.139 | 0.292 | |
(210) | 0.127 | 0.146 | 0.281 |
图6 不同增塑比的PBT/DBP基体体系与(210)AP晶面计算完成时相互作用状态 (a)0.2;(b)0.6;(c)1.0Fig.6 Interaction between PBT/DBP matrix system with different ratios of plasticizers and (210)AP crystal plane after calculated(a)0.2;(b)0.6;(c)1.0 |
表3 增塑比对PBT/DBP基体体系与AP晶面的相互作用影响Table 3 Influence of the quality of plasticizer in the interaction force between AP and PBT/DBP mixtures |
Ratio of plasticizer | Crystal plane | E el/(J·m-2) | E vwd/(J·m-2) | E bind/(J·m-2) |
---|---|---|---|---|
0.2 | (011) | 0.171 | 0.132 | 0.306 |
(201) | 0.147 | 0.132 | 0.284 | |
(210) | 0.158 | 0.129 | 0.290 | |
0.6 | (011) | 0.156 | 0.135 | 0.296 |
(201) | 0.134 | 0.137 | 0.277 | |
(210) | 0.178 | 0.152 | 0.334 | |
1.0 | (011) | 0.153 | 0.133 | 0.293 |
(201) | 0.130 | 0.150 | 0.286 | |
(210) | 0.126 | 0.156 | 0.289 |
图8 添加不同键合剂的PBT/DBP基体体系与(210)AP晶面计算完成时相互作用(a)BUNE;(b)DPE;(c)T313Fig.8 Interaction between PBT/DBP matrix system with different bonding agents and (210)AP crystal plane after calculated (a)BUNE;(b)DPE;(c)T313 |
表4 键合剂对PBT/DBP基体体系与AP晶面的相互作用影响Table 4 Influence of bonding agents in the interaction force between AP and PBT/DBP matrix mixtures |
Type of bonding agents | Crystal plane | E el/(J·m-2) | E vwd/(J·m-2) | E bind/(J·m-2) |
---|---|---|---|---|
None | (011) | 0.153 | 0.133 | 0.293 |
(201) | 0.130 | 0.150 | 0.286 | |
(210) | 0.126 | 0.156 | 0.289 | |
BUNE | (011) | 0.199 | 0.118 | 0.325 |
(201) | 0.185 | 0.132 | 0.323 | |
(210) | 0.262 | 0.222 | 0.492 | |
T313 | (011) | 0.145 | 0.134 | 0.287 |
(201) | 0.161 | 0.139 | 0.306 | |
(210) | 0.152 | 0.137 | 0.297 | |
DPE | (011) | 0.168 | 0.127 | 0.302 |
(201) | 0.179 | 0.132 | 0.317 | |
(210) | 0.162 | 0.139 | 0.309 |
图11 接触角测试结果 (a)PBT/A3;(b)PBT/ Bu-NENA;(c)PBT/DBP(增塑比为0.2);(d)PBT/DBP(增塑比为0.6);(e)PBT/DBP(增塑比为1.0);(f)PBT/DBP/T313;(g)PBT/DBP/BUNE;(h)PBT/DBP/DPEFig.11 Results of contact angle measurements (a)PBT/A3;(b)PBT/ Bu-NENA;(c)PBT/DBP(ratio of plasticizer is 0.2);(d)PBT/DBP(ratio of plasticizer is 0.6);(e)PBT/DBP(ratio of plasticizer is 1.0);(f)PBT/DBP/T313;(g)PBT/DBP/BUNE;(h)PBT/DBP/DPE |
表5 不同基体体系与AP表面接触角测试结果与结合能计算结果对比Table 5 Comparison between the contrast angle measurement results of different matrix systems on AP surface and the calculation results of binding energies |
Matrix mixture | Ratio of plasticizer | θ/(°) | γ sl/(mN·m-1) | W a/(mJ·m-2) | χ * | E bind/(J·m-2) |
---|---|---|---|---|---|---|
PBT/A3 | 1.0 | 46.899 | 13.667 | 99.53 | 7.283 | 0.278 |
PBT/DBP | 1.0 | 28.043 | 6.921 | 100.55 | 14.528 | 0.293 |
PBT/Bu-NENA | 1.0 | 29.398 | 6.972 | 101.21 | 14.517 | 0.292 |
PBT/DBP | 0.2 | 38.986 | 8.765 | 131.26 | 14.975 | 0.306 |
PBT/DBP | 0.6 | 38.413 | 8.315 | 131.72 | 15.841 | 0.334 |
PBT/DBP | 1.0 | 28.043 | 6.921 | 100.55 | 14.528 | 0.293 |
PBT/DBP/T313 | 1.0 | 40.585 | 10.205 | 101.63 | 9.959 | 0.306 |
PBT/DBP/BUNE | 1.0 | 23.352 | 2.721 | 107.28 | 39.427 | 0.492 |
PBT/DBP/DPE | 1.0 | 31.467 | 6.928 | 102.41 | 14.782 | 0.317 |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
罗运军, 葛震. 含能黏合剂合成研究新进展[J].火炸药学报, 2011, 34(2) :1-5.
|
7 |
王誉蓉. PBT推进剂主要组份的表/界面特性及键合作用[D]. 长沙:国防科学技术大学, 2018.
|
8 |
陈芳, 任圆圆, 何磊,等. PYX基高聚物粘结炸药界面相互作用及力学性能的分子动力学模拟[J]. 原子与分子物理学报, 2022, 39(5): 167-172.
|
9 |
陈思彤, 董可海, 唐岩辉, 等. PEG/增塑剂共混物相容性的分子动力学模拟和介观模拟[J]. 含能材料, 2020, 28(4): 308-316.
|
10 |
|
11 |
|
12 |
张崇民, 赵小锋, 付小龙,等. 分子动力学模拟在推进剂组分物理化学性能研究中的应用进展[J]. 火炸药学报, 2018, 41(6):12-18.
|
13 |
|
14 |
胡福增. 材料表面与界面[M]. 上海: 华东理工大学出版社, 2008.
|
15 |
|
16 |
唐汉详. 推进剂流变学概论[M]. 北京:中国宇航出版社, 2021.
|
17 |
邓蕾, 张炜, 鲍桐,等. PBT与含能增塑剂相互作用的分子动力学模拟[J]. 含能材料, 2017, 25(1): 32-38.
|
18 |
刘学. 复合固体推进剂用键合剂的种类及其作用机理[J]. 含能材料, 2000, 8(3): 6-10.
|
/
〈 |
|
〉 |