Gas Phase Selective Oxidation of Methane to Formaldehyde

He Yan, Song Jiaxin, Fan Xiaoqiang, Yu Xuehua, Zhao Zhen

Prog Chem ›› 2025, Vol. 37 ›› Issue (9) : 1321-1341.

PDF(3679 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(3679 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (9) : 1321-1341. DOI: 10.7536/PC20250201
Review

Gas Phase Selective Oxidation of Methane to Formaldehyde

Author information +
History +

Abstract

Methane, as a light alkane clean resource with abundant reserves, its efficient utilization has significant practical significance. Direct conversion of methane into high-value target products through gas-phase selective oxidation of methane has become an effective way to efficiently utilize methane. This reaction has the advantages of simple equipment and relatively low reaction energy consumption. However, the strong carbon-hydrogen bond of methane makes its activation process difficult, and the product formaldehyde is prone to deep oxidation under high-temperature and oxygen-containing conditions, resulting in a decrease in the selectivity of the target product. Therefore, achieving high-selectivity direct oxidation of methane to form oxygen-containing compounds is challenging. This article reviews the research progress in the gas-phase selective oxidation of methane to formaldehyde, focusing on the reaction mechanism of selective oxidation of methane to formaldehyde on catalysts, catalyst systems, and the application of various in-situ characterizations in the reaction. Finally, the future development directions of the selective oxidation of methane are summarized and prospected.

Contents

1 Introduction

2 Methane C―H bond activation

3 Reaction mechanism of gas phase selective oxidation of methane to formaldehyde

3.1 Mars-van Krevelen mechanism

3.2 Non‑Mars‑van Krevelen mechanism involving peroxide species

3.3 Langmuir‑Hinshelwood mechanism

4 Methane selective oxidation reaction catalyst system

4.1 Mo‑based catalyst

4.2 V‑based catalyst

4.3 Fe‑based catalyst

4.4 Other catalysts

5 In‑situ characterization of methane selective oxidation reaction

6 Conclusion and outlook

Key words

methane / gas-phase selective oxidation / formaldehyde / reaction mechanism / catalyst

Cite this article

Download Citations
He Yan , Song Jiaxin , Fan Xiaoqiang , et al . Gas Phase Selective Oxidation of Methane to Formaldehyde[J]. Progress in Chemistry. 2025, 37(9): 1321-1341 https://doi.org/10.7536/PC20250201

References

[1]
Prakash G K S, Olah G A, Goeppert A. ECS Trans., 2011, 35(11): 31.
[2]
Crabtree R H. Chem. Rev., 1995, 95(4): 987.
[3]
Meng X G, Cui X J, Rajan N P, Yu L, Deng D H, Bao X H. Chem, 2019, 5(9): 2296.
[4]
Mierczynski P, Mosinska M, Stepinska N, Chalupka K, Nowosielska M, Maniukiewicz W, Rogowski J, Goswami N, Vasilev K, Szynkowska M I. Catal. Today, 2021, 364: 46.
[5]
Li K Z, Wang H, Wei Y G, Ao X Q, Liu M C. Prog. Chem., 2008, 20(9): 1306
( 李孔斋, 王华, 魏永刚, 敖先权, 刘明春. 化学进展, 2008, 20(9): 1306).
[6]
Luu M T, Milani D, Bahadori A, Abbas A.J. CO2 Util., 2015, 12: 62.
[7]
Gambo Y, Jalil A A, Triwahyono S, Abdulrasheed A A. J. Ind. Eng. Chem., 2018, 59: 218.
[8]
Zhang H, Su Y Q, Kosinov N, Hensen E J M. Chin. J. Catal., 2023, 49: 68.
[9]
Zhu S H, Lian X Y, Fan T T, Chen Z, Dong Y Y, Weng W Z, Yi X D, Fang W P. Nanoscale, 2018, 10(29): 14031.
[10]
Hu J B, Zhao Y L, Liu F W, Chen X T, Xiao L P, Zou S H, Fan J. Mater. Today Sustain., 2025, 29: 101053.
[11]
Hamamoto N, Kawahara T, Hagiwara R, Matsuo K, Matsukawa K, Hinuma Y, Toyao T, Shimizu K I, Kamachi T. Sci. Technol. Adv. Mater., 2025, 26(1): 2435801.
[12]
Xie Y, Cheng J W, Wang W Y, Han Y Y, Fan Q Y, Li H, Cheng K, Zhang Q H, Wang Y. Angew. Chem. Int. Ed., 2025, e202503767.
[13]
Tan P L. Appl. Catal. A Gen., 2019, 580: 111.
[14]
Chen Y P, Mu X L, Luo X, Shi K Q, Yang G, Wu T. Energy Technol., 2020, 8(8): 1900750.
[15]
Pan H, An Q, Mai B K, Chen Y G, Liu P, Zuo Z W. J. Am. Chem. Soc., 2025, 147(2): 1440.
[16]
Senanayake S D, Rodriguez J A, Weaver J F. Acc. Chem. Res., 2020, 53(8): 1488.
[17]
Han C Q, Cao Y H, Huang C, Lv W F, Zhou Y. Prog. Chem., 2024, 36(6): 867
( 韩春秋, 曹玥晗, 黄川, 吕伟峰, 周莹. 化学进展, 2024, 36(6): 867).
[18]
Gogate M R. Petrol. Sci. Technol., 2019, 37(5): 559.
[19]
Yang M, Fan D, Wei Y X, Tian P, Liu Z M. Adv. Mater., 2019, 31(50): 1902181.
[20]
Holmen A. Catal. Today, 2009, 142(1/2): 2.
[21]
Zhang Q J, He D H, Li J L, Xu B Q, Liang Y, Zhu Q M. Appl. Catal. A Gen., 2002, 224(1/2): 201.
[22]
Dallos C G, Kafarov V, Filho R M. Chem. Eng. J., 2007, 134(1/3): 209.
[23]
Arutyunov V S. J. Nat. Gas Chem., 2004, 13(1): 10.
[24]
Sun L L, Wang Y, Guan N J, Li L D. Energy Technol., 2020, 8(8): 1900826.
[25]
Alshihri S, Almegren H. Biogas-Recent Advances and Integrated Approaches. IntechOpen, 2020, 109. DOI: 10.5772/intechopen.87961.
[26]
Alvarez-Galvan M C, Mota N, Ojeda M, Rojas S, Navarro R M, Fierro J L G. Catal. Today, 2011, 171(1): 15.
[27]
Gunsalus N J, Koppaka A, Park S H, Bischof S M, Hashiguchi B G, Periana R A. Chem. Rev., 2017, 117(13): 8521.
[28]
Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C T, Meng X J, Yang H Q, Mesters C, Xiao F S. Science, 2020, 367(6474): 193.
[29]
Olivos-Suarez A I, Szécsényi À, Hensen E J M, Ruiz-Martinez J, Pidko E A, Gascon J. ACS Catal., 2016, 6(5): 2965.
[30]
Lodeng R, Lindvaag O A, Soraker P, Roterud P T, Onsager O T. Ind. Eng. Chem. Res., 1995, 34(4): 1044.
[31]
Otsuka K, Wang Y. Appl. Catal. A Gen., 2001, 222(1/2): 145.
[32]
Khzouz M, Gkanas E I. Catalysts, 2018, 8(1): 5.
[33]
Matsumura Y, Nakamori T. Appl. Catal. A Gen., 2004, 258(1): 107.
[34]
Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K. Appl. Catal. A Gen., 2003, 241(1/2): 261.
[35]
Son I H, Lee S J, Soon A, Roh H S, Lee H. Appl. Catal. B Environ., 2013, 134/135: 103.
[36]
Muraza O, Galadima A. Int. J. Energy Res., 2015, 39(9): 1196.
[37]
Al-Fatesh A, Amin A, Ibrahim A, Khan W, Soliman M, AL-Otaibi R, Fakeeha A. Catalysts, 2016, 6(3): 40.
[38]
Ahlquist M, Nielsen R J, Periana R A, Goddard W A. J. Am. Chem. Soc., 2009, 131(47): 17110.
[39]
Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M H, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W. Chem. Rev., 2001, 101(4): 953.
[40]
Schröder D, Schwarz H. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(47): 18114.
[41]
Shilov A E, Shul’pin G B. Chem. Rev., 1997, 97(8): 2879.
[42]
Mayer J M. Acc. Chem. Res., 2011, 44(1): 36.
[43]
Szécsényi Á, Li G N, Gascon J, Pidko E A. ACS Catal., 2018, 8(9): 7961.
[44]
Doan H A, Wang X J, Snurr R Q. J. Phys. Chem. Lett., 2023, 14(21): 5018.
[45]
Sajid M, Khan B, Shahzad N. J. Mol. Graph. Model., 2023, 121: 108446.
[46]
Yu C L, Wang C, Frenklach M. J. Phys. Chem., 1995, 99(39): 14377.
[47]
de Vekki A V, Marakaev S T. Russ. J. Appl. Chem., 2009, 82(4): 521.
[48]
Feng W Y, Knopf F C, Dooley K M. Energy Fuels, 1994, 8(4): 815.
[49]
Hunter N R, Gesser H D, Morton L A, Yarlagadda P S, Fung D P C. Appl. Catal., 1990, 57(1): 45.
[50]
Sokolovskii V D. Catal. Rev., 1990, 32(1/2): 1.
[51]
Arena F, Giordano N, Parmaliana A. J. Catal., 1997, 167(1): 66.
[52]
Smith M R, Ozkan U S. J. Catal., 1993, 141(1): 124.
[53]
Sexton A W, Kartheuser B, Batiot C, Zanthoff H W, Hodnett B K. Catal. Today, 1998, 40(2/3): 245.
[54]
Kartheuser B, Hodnett B K, Zanthoff H, Baerns M. Catal. Lett., 1993, 21: 209.
[55]
Polnišer R, Štolcová M, Hronec M, Mikula M. Appl. Catal. A Gen., 2011, 400(1/2): 122.
[56]
Mauti R, Mims C A. Catal. Lett., 1993, 21: 201.
[57]
Zhang Q H, Li Y, An D L, Wang Y. Appl. Catal. A Gen., 2009, 356(1): 103.
[58]
Li Y, An D L, Zhang Q H, Wang Y. J. Phys. Chem. C, 2008, 112(35): 13700.
[59]
Mars P, van Krevelen D W. Chem. Eng. Sci., 1954, 3: 41.
[60]
Moro-Oka Y, Ueda W. Adv. Catal., 1994, 40: 233.
[61]
Ohler N, Bell A T. J. Phys. Chem. B, 2006, 110(6): 2700.
[62]
Chempath S, Bell A T. J. Catal., 2007, 247(1): 119.
[63]
Lee E L, Wachs I E. J. Phys. Chem. C, 2007, 111(39): 14410.
[64]
Lee E L, Wachs I E. J. Phys. Chem. C, 2008, 112(16): 6487.
[65]
Handzlik J, Ogonowski J. J. Phys. Chem. C, 2012, 116(9): 5571.
[66]
Berry F J, Greaves C. J. Chem. Soc., Dalton Trans., 1981, 12: 2447.
[67]
Arena F, Parmaliana A. Acc. Chem. Res., 2003, 36(12): 867.
[68]
Matsuda A, Obara K, Ishikawa A, Tsai M H, Wang C H, Lin Y C, Hara M, Kamata K. Catal. Sci. Technol., 2023, 13(18): 5180.
[69]
Szöke A, Solymosi F. Appl. Catal. A Gen., 1996, 142(2): 361.
[70]
Erdőhelyi A, Fodor K, Solymosi F. J. Catal., 1997, 166(2): 244.
[71]
Sun Q, Di Cosimo J I, Herman R G, Klier K, Bhasin M M. Catal. Lett., 1992, 15(4): 371.
[72]
Sun Q, Herman R G, Klier K. Catal. Lett., 1992, 16(3): 251.
[73]
Han P J, Yan R, Wei Y Q, Li L S, Luo J S, Pan Y, Wang B J, Lin J D, Wan S L, Xiong H F, Wang Y, Wang S. J. Am. Chem. Soc., 2023, 145(19): 10564.
[74]
Tabata K, Teng Y, Takemoto T, Suzuki E, Bañares M A, Peña M A, Fierro J L G. Catal. Rev., 2002, 44(1): 1.
[75]
Hall T J, Hargreaves J S J, Hutchings G J, Joyner R W, Taylor S H. Fuel Process. Technol., 1995, 42(2/3): 151.
[76]
Foulds G A, Gray B F. Fuel Process. Technol., 1995, 42(2/3): 129.
[77]
Herman R G, Sun Q, Shi C L, Klier K, Wang C B, Hu H C, Wachs I E, Bhasin M M. Catal. Today, 1997, 37(1): 1.
[78]
Wachs I E, Deo G, Jehng J M, Kim D S, Hu H. ACS Symp. Ser., 1996, 638: 292.
[79]
Kasztelan S, Moffat J B. J. Catal., 1988, 112(1): 54.
[80]
Spencer N D. J. Catal., 1988, 109(1): 187.
[81]
Parmaliana A, Frusteri F, Miceli D, Mezzapica A, Scurrell M S, Giordano N. Appl. Catal., 1991, 78(2): L7.
[82]
Miceli D, Arena F, Parmaliana A, Scurrell M S, Sokolovskii V. Catal. Lett., 1993, 18(3): 283.
[83]
Faraldos M, Bañares M A, Anderson J A, Hu H C, Wachs I E, Fierro J L G. J. Catal., 1996, 160(2): 214.
[84]
Smith M R, Zhang L, Driscoll S A, Ozkan U S. Catal. Lett., 1993, 19: 1.
[85]
Dai L X, Teng Y H, Tabata K, Suzuki E, Tatsumi T. Microporous Mesoporous Mater., 2001, 44/45: 573.
[86]
de Lucas A, Valverde J L, Rodriguez L, Sanchez P, Garcia M T. Appl. Catal. A Gen., 2000, 203(1): 81.
[87]
Miao S J, Liu L, Lian Y X, Zhu X X, Zhou S T, Wang Y, Bao X H. Catal. Lett., 2004, 97(3/4): 209.
[88]
Chen P, Xie Z A, Zhao Z, Li J M, Liu B N, Liu B J, Fan X Q, Kong L, Xiao X. Catal. Sci. Technol., 2021, 11(12): 4083.
[89]
Aoki K, Ohmae M, Nanba T, Takeishi K, Azuma N, Ueno A, Ohfune H, Hayashi H, Udagawa Y. Catal. Today, 1998, 45(1/4): 29.
[90]
Lou Y C, Tang Q H, Wang H R, Chia B T, Wang Y, Yang Y H. Appl. Catal. A Gen., 2008, 350(1): 118.
[91]
Yang W, Wang X X, Guo Q, Zhang Q H, Wang Y. New J. Chem., 2003, 27(9): 1301.
[92]
Wang X X, Lin B M, Yang W, Guo Q, Zhang Q H, Wang Y. Acta Chim. Sinica, 2004, 62(18): 1738.
[93]
Yang X G, Jung K D, Cho S H, Joo O S, Uhm S J, Han S H. Catal. Lett., 2000, 64: 185.
[94]
Cortés Ortiz W G, Delgado D, Guerrero Fajardo C A, Agouram S, Sanchís R, Solsona B, López Nieto J M. Mol. Catal., 2020, 491: 110982.
[95]
Pei S P, Yue B, Qian L P, Yan S R, Cheng J F, Zhou Y, Xie S H, He H Y. Appl. Catal. A Gen., 2007, 329: 148.
[96]
Solsona B, Blasco T, López Nieto J M, Peña M L, Rey F, Vidal-Moya A. J. Catal., 2001, 203(2): 443.
[97]
Liu Y M, Cao Y, Yi N, Feng W L, Dai W L, Yan S R, He H Y, Fan K N. J. Catal., 2004, 224(2): 417.
[98]
Cheng W H. J. Catal., 1996, 158(2): 477.
[99]
Tanabe K. Mater. Chem. Phys., 1985, 13(3/4): 347.
[100]
Zhang X, He D H, Zhang Q J, Ye Q, Xu B Q, Zhu Q M. Appl. Catal. A Gen., 2003, 249(1): 107.
[101]
Cui X H, Wei Q, Li X W, Ma Y D. Chem. J. Chin. Univ., 1990, 11(10): 1158
( 崔湘浩, 魏诠, 李向伟, 马英德. 高等学校化学学报, 1990, 11(10): 1158).
[102]
Carlsson P A, Jing D, Skoglundh M. Energy Fuels, 2012, 26(3): 1984.
[103]
Akiyama T, Sei R, Takenaka S. Catal. Sci. Technol., 2021, 11(15): 5273.
[104]
Spencer N D, Pereira C J. J. Catal., 1989, 116(2): 399.
[105]
Fornés V, López C, López H H, Martinez A. Appl. Catal. A Gen., 2003, 249(2): 345.
[106]
Koranne M M, Goodwin Jr J G, Marcelin G. J. Phys. Chem., 1993, 97(3): 673.
[107]
Koranne M M, Goodwin J G, Marcelin G. J. Catal., 1994, 148(1): 388.
[108]
Grzybowska-Świerkosz B. Appl. Catal. A Gen., 1997, 157(1/2): 409.
[109]
Inumaru K, Misono M, Okuhara T. Appl. Catal. A Gen., 1997, 149(1): 133.
[110]
Launay H, Loridant S, Pigamo A, Dubois J L, Millet J M M. J. Catal., 2007, 246(2): 390.
[111]
Launay H, Loridant S, Nguyen D L, Volodin A M, Dubois J L, Millet J M M. Catal. Today, 2007, 128(3/4): 176.
[112]
Berndt H, Martin A, Brückner A, Schreier E, Müller D, Kosslick H, Wolf G U, Lücke B. J. Catal., 2000, 191(2): 384.
[113]
Coulston G W, Bare S R, Kung H, Birkeland K, Bethke G K, Harlow R, Herron N, Lee P L. Science, 1997, 275(5297): 191.
[114]
McCormick R L, Alptekin G O, Herring A M, Ohno T R, Dec S F. J. Catal., 1997, 172(1): 160.
[115]
Sun Q, Jehng J M, Hu H C, Herman R G, Wachs I E, Klier K. J. Catal., 1997, 165(1): 91.
[116]
Makowski W, Łojewska J, Dziembaj R. React. Kinet. Catal. Lett., 2004, 83(1): 121.
[117]
Kartheuser B, Hodnett B K. J. Chem. Soc., Chem. Commun., 1993(13): 1093.
[118]
Wallis P, Wohlrab S, Kalevaru V N, Frank M, Martin A. Catal. Today, 2016, 278: 120.
[119]
Pirovano C, Schönborn E, Wohlrab S, Narayana Kalevaru V, Martin A. Catal. Today, 2012, 192(1): 20.
[120]
Yang E, Lee J G, Park E D, An K. Korean J. Chem. Eng., 2021, 38(6): 1224.
[121]
Wang C B, Herman R G, Shi C L, Sun Q, Roberts J E. Appl. Catal. A Gen., 2003, 247(2): 321.
[122]
Horn R, Schlögl R. Catal. Lett., 2015, 145: 23.
[123]
Song J X, Cui J, Gao X, Fan X Q, Yu X H, Kong L, Xiao X, Xie Z A, Zhao Z. Appl. Catal. A Gen., 2024, 686: 119928.
[124]
Fujdala K L, Tilley T D. J. Catal., 2003, 216(1/2): 265.
[125]
Ruddy D A, Ohler N L, Bell A T, Tilley T D. J. Catal., 2006, 238(2): 277.
[126]
Nguyen L D, Loridant S, Launay H, Pigamo A, Dubois J L, Millet J M M. J. Catal., 2006, 237(1): 38.
[127]
Yang E, Lee J G, Kim D H, Jung Y S, Kwak J H, Park E D, An K. J. Catal., 2018, 368: 134.
[128]
Loricera C V, Alvarez-Galvan M C, Guil-Lopez R, Ismail A A, Al-Sayari S A, Fierro J L G. Top. Catal., 2017, 60: 1129.
[129]
Zhang Q H, Yang W, Wang X X, Wang Y, Shishido T, Takehira K. Microporous Mesoporous Mater., 2005, 77(2/3): 223.
[130]
Shimura K, Fujitani T. Appl. Catal. A Gen., 2019, 577: 44.
[131]
Wallis P, Schönborn E, Kalevaru V N, Martin A, Wohlrab S. RSC Adv., 2015, 5(85): 69509.
[132]
Zhang H D, Zhang J, Sun K Q, Feng Z C, Ying P L, Li C. Catal. Lett., 2006, 106: 89.
[133]
Irusta S, Marchi A J, Lombardo E A, Miré E E. Catal. Lett., 1996, 40: 9.
[134]
Battiston A A, Bitter J H, De Groot F M F, Overweg A R, Stephan O, Van Bokhoven J A, Kooyman P J, Van Der Spek C, Vankó G, Koningsberger D C. J. Catal., 2003, 213(2): 251.
[135]
Marturano P, Drozdová L, Kogelbauer A, Prins R. J. Catal., 2000, 192(1): 236.
[136]
Grasselli R K. Top. Catal., 2002, 21: 79.
[137]
Arena F, Gatti G, Martra G, Coluccia S, Stievano L, Spadaro L, Famulari P, Parmaliana A. J. Catal., 2005, 231(2): 365.
[138]
Kobayashi T, Guilhaume N, Miki J, Kitamura N, Haruta M. Catal. Today, 1996, 32(1/4): 171.
[139]
He J L, Li Y, An D L, Zhang Q H, Wang Y. J. Nat. Gas Chem., 2009, 18(3): 288.
[140]
Alptekin G O, Herring A M, Williamson D L, Ohno T R, McCormick R L. J. Catal., 1999, 181(1): 104.
[141]
McCormick R L, Alptekin G O, Williamson D L, Ohno T R. Top. Catal., 2000, 10: 115.
[142]
Wang X X, Wang Y, Tang Q H, Guo Q, Zhang Q H, Wan H L. J. Catal., 2003, 217(2): 457.
[143]
Wachi K, Yabe T, Suzuki T, Yonesato K, Suzuki K, Yamaguchi K. Catal. Sci. Technol., 2023, 13(16): 4744.
[144]
McCormick R L, Alptekin G O. Catal. Today, 2000, 55(3): 269.
[145]
Wang Y, Wang X X, Su Z, Guo Q, Tang Q H, Zhang Q H, Wan H L. Catal. Today, 2004, 93: 155.
[146]
Matsuda A, Tateno H, Kamata K, Hara M. Catal. Sci. Technol., 2021, 11(21): 6987.
[147]
Nedyalkova R, Niznansky D, Roger A C. Catal. Commun., 2009, 10(14): 1875.
[148]
Yu T, Su Y, Wang A Q, Weckhuysen B M, Luo W H. ChemCatChem, 2021, 13(12): 2766.
[149]
Fajardo C A G, Niznansky D, N’Guyen Y, Courson C, Roger A C. Catal. Commun., 2008, 9(5): 864.
[150]
Kim D S, Ostromecki M, Wachs I E, Kohler S D, Ekerdt J G. Catal. Lett., 1995, 33: 209.
[151]
Kohler S D, Ekerdt J G, Kim D S, Wachs I E. Catal. Lett., 1992, 16(3): 231.
[152]
Salvati L Jr, Makovsky L E, Stencel J M, Brown F R, Hercules D M. J. Phys. Chem., 1981, 85(24): 3700.
[153]
Bañares M A, Alemany L J, López Granados M, Faraldos M, Fierro J L G. Catal. Today, 1997, 33(1/3): 73.
[154]
de Lucas A, Valverde J L, Cañizares P, Rodriguez L. Appl. Catal. A Gen., 1999, 184(1): 143.
[155]
de Lucas A, Valverde J L, Cañizares P, Rodriguez L. Appl. Catal. A Gen., 1998, 172(1): 165.
[156]
Zheng Y F, Yu Y Q, Zhou H, Huang W Z, Pu Z Y. RSC Adv., 2020, 10(8): 4490.
[157]
Ohyama J, Abe D, Hirayama A, Iwai H, Tsuchimura Y, Sakamoto K, Irikura M, Nakamura Y, Yoshida H, Machida M, Nishimura S, Yamamoto T, Matsumura S, Takahashi K. J. Phys. Chem. C, 2022, 126(4): 1785.
[158]
Mahyuddin M H, Shiota Y, Yoshizawa K. Catal. Sci. Technol., 2019, 9(8): 1744.
[159]
Krisnandi Y K, Putra B A P, Bahtiar M, Zahara, Abdullah I, Howe R F. Procedia Chem., 2015, 14: 508.
[160]
Beznis N V, Weckhuysen B M, Bitter J H. Catal. Lett., 2010, 136: 52.
[161]
Beznis N V, van Laak A N C, Weckhuysen B M, Bitter J H. Microporous Mesoporous Mater., 2011, 138(1/3): 176.
[162]
Li Y, Chen S L, Zhang Q H, Wang Y. Chem. Lett., 2006, 35(6): 572.
[163]
An D L, Zhang Q H, Wang Y. Catal. Today, 2010, 157(1/4): 143.
[164]
Michalkiewicz B, Sreńscek-Nazzal J, Tabero P, Grzmil B, Narkiewicz U. Chem. Pap., 2008, 62(1): 106.
[165]
Larrondo S, Irigoyen B, Baronetti G, Amadeo N. Appl. Catal. A Gen., 2003, 250(2): 279.
[166]
Zhang H D, Zhang L, Feng Z C, Wang S G, Sun K Q, Ying P L, Li C. Chin. J. Catal., 2005, 26(7): 542.
[167]
Zhang H D, Ying P L, Zhang J, Liang C H, Feng Z C, Li C. Stud. Surf. Sci. Catal., 2004, 147: 547.
[168]
Zhang H D, Sun K Q, Feng Z C, Ying P L, Li C. Appl. Catal. A Gen., 2006, 305(1): 110.
[169]
Matsumura H, Okumura K, Shimamura T, Ikenaga N O, Miyake T, Suzuki T. J. Mol. Catal. A Chem., 2006, 250(1/2): 122.
[170]
Tabata K, Kawabe T, Yamaguchi Y, Suzuki E, Yashima T. J. Catal., 2005, 231(2): 430.
[171]
Shi L, Wang Y, Yan B, Song W, Shao D, Lu A H. Chem. Commun., 2018, 54(78): 10936.
[172]
Venegas J M, McDermott W P, Hermans I. Acc. Chem. Res., 2018, 51(10): 2556.
[173]
Tian J S, Tan J Q, Zhang Z X, Han P J, Yin M, Wan S L, Lin J D, Wang S, Wang Y. Nat. Commun., 2020, 11(1): 5693.
[174]
Wachs I E, Weckhuysen B M. Appl. Catal. A Gen., 1997, 157(1/2): 67.
[175]
Chen P, Xie Z A, Zhao Z, Liu B J, Fan X Q, Kong L, Xiao X. Mol. Catal., 2023, 535: 112886.
[176]
Ning M H, Wang S N, Wan J, Xi Z C, Chen Q, Sun Y M, Li H, Ma T Y, Jin H Y. Angew. Chem. Int. Ed., 2024, 63(50): e202415794.
[177]
Yang Y, Zheng W, Cheng D G, Chen F Q, Zhan X L. Prog. Chem. 2009, 21(10): 2205
( 杨旸, 郑雯, 程党国, 陈丰秋, 詹晓力. 化学进展, 2009, 21(10): 2205).
[178]
Zhong S, He B, Wei S, Wang R R, Zhang R R, Liu R X. Appl. Catal. B Environ. Energy, 2025, 362: 124743.
[179]
Wang W Y, Wu F W, Han Y Y, Zhou W, Weng W Z, Cheng K, Zhang Q H, Wang Y. Chem. Eng. Sci., 2025, 306: 121289.
[180]
Liu Y, Huang F Y, Li J M, Weng W Z, Luo C R, Wang M L, Xia W S, Huang C J, Wan H L. J. Catal., 2008, 256(2): 192.
[181]
Yao J K, Xu Y J, Yang H, Ren Z Z, Wu L Z, Tang Y. Catalysts, 2022, 12(10): 1146.

Funding

The National Natural Science Foundation of China(22172101)
The Applied Basic Research Program of Liaoning Province(2023JH2/101600059)
The "Xingliao Talents" Youth Top Talent Program of Liaoning Province(XLYC2203138)
The Special Fund for Basic Scientific Research and Operation of undergraduate universities in Liaoning Province(LJ212410166046)
The Major Project Incubation Project of Shenyang Normal University
PDF(3679 KB)

Accesses

Citation

Detail

Sections
Recommended

/