PDF(3679 KB)
Gas Phase Selective Oxidation of Methane to Formaldehyde
He Yan, Song Jiaxin, Fan Xiaoqiang, Yu Xuehua, Zhao Zhen
Prog Chem ›› 2025, Vol. 37 ›› Issue (9) : 1321-1341.
PDF(3679 KB)
PDF(3679 KB)
Gas Phase Selective Oxidation of Methane to Formaldehyde
Methane, as a light alkane clean resource with abundant reserves, its efficient utilization has significant practical significance. Direct conversion of methane into high-value target products through gas-phase selective oxidation of methane has become an effective way to efficiently utilize methane. This reaction has the advantages of simple equipment and relatively low reaction energy consumption. However, the strong carbon-hydrogen bond of methane makes its activation process difficult, and the product formaldehyde is prone to deep oxidation under high-temperature and oxygen-containing conditions, resulting in a decrease in the selectivity of the target product. Therefore, achieving high-selectivity direct oxidation of methane to form oxygen-containing compounds is challenging. This article reviews the research progress in the gas-phase selective oxidation of methane to formaldehyde, focusing on the reaction mechanism of selective oxidation of methane to formaldehyde on catalysts, catalyst systems, and the application of various in-situ characterizations in the reaction. Finally, the future development directions of the selective oxidation of methane are summarized and prospected.
1 Introduction
2 Methane C―H bond activation
3 Reaction mechanism of gas phase selective oxidation of methane to formaldehyde
3.1 Mars-van Krevelen mechanism
3.2 Non‑Mars‑van Krevelen mechanism involving peroxide species
3.3 Langmuir‑Hinshelwood mechanism
4 Methane selective oxidation reaction catalyst system
4.1 Mo‑based catalyst
4.2 V‑based catalyst
4.3 Fe‑based catalyst
4.4 Other catalysts
5 In‑situ characterization of methane selective oxidation reaction
6 Conclusion and outlook
methane / gas-phase selective oxidation / formaldehyde / reaction mechanism / catalyst
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
( 李孔斋, 王华, 魏永刚, 敖先权, 刘明春. 化学进展, 2008, 20(9): 1306).
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
( 韩春秋, 曹玥晗, 黄川, 吕伟峰, 周莹. 化学进展, 2024, 36(6): 867).
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
( 崔湘浩, 魏诠, 李向伟, 马英德. 高等学校化学学报, 1990, 11(10): 1158).
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
|
| [174] |
|
| [175] |
|
| [176] |
|
| [177] |
( 杨旸, 郑雯, 程党国, 陈丰秋, 詹晓力. 化学进展, 2009, 21(10): 2205).
|
| [178] |
|
| [179] |
|
| [180] |
|
| [181] |
|
/
| 〈 |
|
〉 |