Fabrication and Application of Liquid Crystal Elastomer Fibers

Shan Yuanhang, Hu Jun, Wang Meng

Prog Chem ›› 2025, Vol. 37 ›› Issue (9) : 1342-1351.

PDF(13765 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(13765 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (9) : 1342-1351. DOI: 10.7536/PC20250211
Review

Fabrication and Application of Liquid Crystal Elastomer Fibers

Author information +
History +

Abstract

Liquid crystal elastomers (LCEs) are crosslinked polymer networks that combine the anisotropy of liquid crystals with the entropic elasticity of elastomers. They exhibit reversible large deformations under external stimuli, making them a focal point in smart materials research. Among various forms, LCE fibers, characterized by their high aspect ratio and large specific surface area, demonstrate enhanced sensitivity, greater deformation capacity, and excellent reversibility, weavability, and programmability, significantly broadening their application potential. In recent years, advancements in manufacturing technologies have expanded the fabrication methods of LCE fibers from traditional pulling and templating techniques to advanced spinning technologies such as melt spinning, electrospinning, wet spinning, and emerging 3D/4D printing techniques. These innovations have not only provided more possibilities for structural design and performance optimization of LCE fibers but also promoted their widespread use in high-performance material applications. This article systematically reviews the molecular structure and diverse fabrication methods of LCE fibers, discusses their applications in artificial muscles, soft robotics, smart clothing, and wearable devices, and provides an outlook on the future development of LCE fibers.

Contents

1 Introduction

2 Molecular structures of liquid crystal elastomer fiber

3 Fabrication technology of liquid crystal elastomer fiber

3.1 Pultrusion method

3.2 Template method

3.3 Printing method

3.4 Spinning method

3.5 Microfluidic method

4 Application of liquid crystal elastomer fiber

4.1 Artificial muscles

4.2 Soft robots

4.3 Intelligent textiles

5 Conclusion and outlook

Key words

liquid crystal elastomer / fiber / soft robot / artificial muscle

Cite this article

Download Citations
Shan Yuanhang , Hu Jun , Wang Meng. Fabrication and Application of Liquid Crystal Elastomer Fibers[J]. Progress in Chemistry. 2025, 37(9): 1342-1351 https://doi.org/10.7536/PC20250211

References

[1]
Lv J A, Liu Y Y, Wei J, Chen E Q, Qin L, Yu Y L. Nature, 2016, 537(7619): 179.
[2]
Pilz da Cunha M, Debije M G, Schenning A P H J. Chem. Soc. Rev., 2020, 49(18): 6568.
[3]
Chen X Y, Chen J Y, Song X Y, Du T J, Deng X R, Deng Z P, Hu X G, Zeng X P, Yang Z, Yang H, Lan R C. Adv. Mater., 2024, 36(50): 2403766.
[4]
Saed M O, Gablier A, Terentjev E M. Chem. Rev., 2022, 122(5): 4927.
[5]
Zhou X R, Chen G C, Jin B J, Feng H J, Chen Z K, Fang M Q, Yang B, Xiao R, Xie T, Zheng N. Adv. Sci., 2024, 11(23): 2402358.
[6]
van Raak R J H, Broer D J. Polymers, 2022, 14(7): 1384.
[7]
Liang H, Zhang Y B, He E J, Yang Y, Liu Y W, Xu H T, Yang Z J, Wang Y X, Wei Y, Ji Y. Adv. Mater., 2024, 36(29): 2400286.
[8]
Jiang Z C, Liu Q, Xiao Y Y, Zhao Y. Prog. Polym. Sci., 2024, 153: 101829.
[9]
Stoychev G V, Ionov L. ACS Appl. Mater. Interfaces, 2016, 8(37): 24281.
[10]
Ma J Z, Yang Z Q. Matter, 2025, 8(2): 101950.
[11]
Nocentini S, Martella D, Wiersma D S, Parmeggiani C. Soft Matter, 2017, 13(45): 8590.
[12]
Ma J Z, Wang Y P, Sun J H, Yang Z Q. Adv. Funct. Mater., 2024, 34(37): 2402403.
[13]
Lee J H, Oh S, Jeong I S, Lee Y J, Kim M C, Park J S, Hyun K, Ware T H, Ahn S K. Sci. Adv., 2025, 11(3): eadt7613.
[14]
Silva P E S, Lin X Y, Vaara M, Mohan M, Vapaavuori J, Terentjev E M. Adv. Mater., 2023, 35(14): 2210689.
[15]
Li L Z, Dong X, Xu J W, Jiang Y Y, Zhou X S, Li Q Y, Yuan N Y, Ding J N. Sens. Actuat. B Chem., 2023, 390: 133846.
[16]
Yang H R, Wu D S, Zheng S M, Yu Y J, Ren L Y, Li J, Ke H Z, Lv P F, Wei Q F. ACS Appl. Mater. Interfaces, 2024, 16(7): 9313.
[17]
Sun D P, Xiao Y, Zheng Y, Zhang A X, Guo B L, Chen D. Chin. J. Polym. Sci., 2025, 43(4): 556.
[18]
Javadzadeh M, del Barrio J, Sánchez-Somolinos C. Adv. Mater., 2023, 35(14): 2209244.
[19]
Lin X Y, Saed M O, Terentjev E M. Soft Matter, 2021, 17(21): 5436.
[20]
Martinez A P, Decker L K, Wang K Y, Kim J B, Murray C B, Yang S. Adv. Funct. Mater., 2025, 35(24): 2422176.
[21]
Fleischmann E K, Forst F R, Zentel R. Macromol. Chem. Phys., 2014, 215(10): 1004.
[22]
Wang Q R, Tian X Y, Zhang D K, Zhou Y L, Yan W Q, Li D C. Nat. Commun., 2023, 14: 3869.
[23]
Hou W H, Wang J, Lv J A. Adv. Mater., 2023, 35(16): 2211800.
[24]
Xu Z P, Wu M R, Ye Q, Chen D, Liu K, Bai H. Engineering, 2022, 14: 100.
[25]
Wang X, Shao H Q, Tang J, Chen J F, Huang Y L, Pan J J, Zhang Y, Wang W D, Jiang J H, Chen N L. Adv. Mater. Technol., 2023, 8(19): 2300814.
[26]
Lugger S J D, Engels T A P, Cardinaels R, Bus T, Mulder D J, Schenning A P H J. Adv. Funct. Mater., 2023, 33(49): 2306853.
[27]
Wan X, Debije M G, Sorin F, Chen M, Zhou K, Schenning A P H J. Chem. Eng. J., 2025, 505: 159358.
[28]
Li M Z, Gholami F, Yue L, Fratarcangeli M R, Black E, Shimokawa S, Nomura T, Tanaka M, Kobayashi H, Song Y Y, Qi H J. Adv. Funct. Mater., 2024, 34(42): 2406847.
[29]
Cui B, Ren M, Dong L Z, Wang Y L, He J F, Wei X L, Zhao Y R, Xu P P, Wang X N, Di J T, Li Q W. ACS Nano, 2023, 17(13): 12809.
[30]
Wang Y P, Sun J H, Liao W, Yang Z Q. Adv. Mater., 2022, 34(9): 2107840.
[31]
Liu L, del Pozo M, Mohseninejad F, Debije M G, Broer D J, Schenning A P H J. Adv. Opt. Mater., 2020, 8(18): 2000732.
[32]
Jiang Z C, Xiao Y Y, Cheng R D, Hou J B, Zhao Y. Chem. Mater., 2021, 33(16): 6541.
[33]
Zhao L M, Tian H M, Liu H R, Zhang W T, Zhao F B, Song X W, Shao J Y. Small, 2023, 19(17): 2206342.
[34]
Zhang C, Fei G X, Lu X L, Xia H S, Zhao Y. Adv. Mater., 2024, 36(7): 2307210.
[35]
Leanza S, Lu-Yang J, Kaczmarski B, Wu S, Kuhl E, Zhao R R. Adv. Funct. Mater., 2024, 34(29): 2400396.
[36]
Wang Z, Li K, He Q, Cai S. Adv. Mater., 2019, 31(7): 1806849.
[37]
He Q G, Wang Z J, Wang Y, Wang Z J, Li C H, Annapooranan R, Zeng J, Chen R K, Cai S Q. Sci. Robot., 2021, 6(57): eabi9704.
[38]
Wu D S, Zhang Y N, Yang H R, Wei A F, Zhang Y X, Mensah A, Yin R, Lv P F, Feng Q, Wei Q F. Mater. Horiz., 2023, 10(7): 2587.
[39]
Wang Y C, Liu J Q, Yang S. Appl. Phys. Rev., 2022, 9(1): 011301.
[40]
Nie Z Z, Wang M, Yang H. Chem., 2023, 29(38): e202301027.
[41]
Ula S W, Traugutt N A, Volpe R H, Patel R R, Yu K, Yakacki C M. Liq. Cryst. Rev., 2018, 6(1): 78.
[42]
Valenzuela C, Chen Y H, Wang L, Feng W. Chem., 2022, 28(70): e202201957.
[43]
Naciri J, Srinivasan A, Jeon H, Nikolov N, Keller P, Ratna B R. Macromolecules, 2003, 36(22): 8499.
[44]
Küpfer J, Finkelmann H. Makromol. Chem., Rapid Commun., 1991, 12(12): 717.
[45]
Yang R, Zhao Y. Angew. Chem. Int. Ed., 2017, 56(45): 14202.
[46]
Meng F B, Du C, Zhou N Y, He X Z, Chen H B. Eur. Polym. J., 2013, 49(10): 3392.
[47]
Meng F B, Zhang X D, He X Z, Lu H, Ma Y, Han H L, Zhang B Y. Polymer, 2011, 52(22): 5075.
[48]
Ambulo C P, Burroughs J J, Boothby J M, Kim H, Shankar M R, Ware T H. ACS Appl. Mater. Interfaces, 2017, 9(42): 37332.
[49]
Lee Y J, Abdelrahman M K, Kalairaj M S, Ware T H. Small, 2023, 19(41): 2302774.
[50]
Fleischmann E K, Forst F R, Köder K, Kapernaum N, Zentel R. J. Mater. Chem. C, 2013, 1(37): 5885.
[51]
Yakacki C M, Saed M, Nair D P, Gong T, Reed S M, Bowman C N. RSC Adv., 2015, 5(25): 18997.
[52]
Zou W K, Lin X Y, Terentjev E M. Adv. Mater., 2021, 33(30): 2101955.
[53]
Tian X W, Guo Y S, Zhang J Q, Ivasishin O M, Jia J R, Yan J H. Small, 2024, 20(24): 2306952.
[54]
Yang H, Liu M X, Yao Y W, Tao P Y, Lin B P, Keller P, Zhang X Q, Sun Y, Guo L X. Macromolecules, 2013, 46(9): 3406.
[55]
Cheng Z X, Ma S D, Zhang Y H, Huang S, Chen Y X, Yu H F. Macromolecules, 2017, 50(21): 8317.
[56]
Dong X, Zhou X S, Li L Z, Cao X T, Xu J W, Dai S P, Jiang Y Y, Li Q Y, Yuan N Y, Ding J N. iScience, 2023, 26(4): 106357.
[57]
Yu Y, Li L L, Liu E P, Han X, Wang J J, Xie Y X, Lu C H. Carbon, 2022, 187: 97.
[58]
Geng Y, Lagerwall J P F. Adv. Sci., 2023, 10(19): 2301414.
[59]
Liao W, Yang Z Q. Adv. Mater. Technol., 2022, 7(6): 2101260.
[60]
Lugger S J D, Houben S J A, Foelen Y, Debije M G, Schenning A P H J, Mulder D J. Chem. Rev., 2022, 122(5): 4946.
[61]
Feng X M, Wang L, Xue Z J, Xie C, Han J, Pei Y C, Zhang Z F, Guo W H, Lu B H. Sci. Adv., 2024, 10(10): eadk3854.
[62]
Martinez A P, Ng A, Nah S H, Yang S. Adv. Funct. Mater., 2024, 34(34): 2400742.
[63]
Guan Z C, Wang L, Bae J. Mater. Horiz., 2022, 9(7): 1825.
[64]
Mistry D, Traugutt N A, Sanborn B, Volpe R H, Chatham L S, Zhou R, Song B, Yu K, Long K N, Yakacki C M. Nat. Commun., 2021, 12: 6677.
[65]
Chen W H, Tong D Z, Meng L H, Tan B W, Lan R C, Zhang Q F, Yang H, Wang C, Liu K. Adv. Mater., 2024, 36(27): 2400763.
[66]
Li S S, Yu K H, Garcia I, Nah S H, Chui H N T, Tian Z T, Yang S. Adv. Funct. Mater., 2025, 35(4): 2413965.
[67]
Song Y, Yu X Q, Chen S. J. Polym. Sci., 2024, 62(3): 447.
[68]
Ohm C, Morys M, Forst F R, Braun L, Eremin A, Serra C, Stannarius R, Zentel R. Soft Matter, 2011, 7(8): 3730.
[69]
Zhang X, Liao W, Zhu C Y, Yang Z Q. ACS Appl. Polym. Mater., 2024, 6(17): 11050.
[70]
Aziz S, Spinks G M. Mater. Horiz., 2020, 7(3): 667.
[71]
Kim I H, Choi S, Lee J, Jung J, Yeo J, Kim J T, Ryu S, Ahn S K, Kang J, Poulin P, Kim S O. Nat. Nanotechnol., 2022, 17(11): 1198.
[72]
Liu H R, Tian H M, Li X M, Chen X L, Zhang K, Shi H Y, Wang C H, Shao J Y. Sci. Adv., 2022, 8(20): eabn5722.
[73]
Roach D J, Yuan C, Kuang X, Li V C, Blake P, Romero M L, Hammel I, Yu K, Qi H J. ACS Appl. Mater. Interfaces, 2019, 11(21): 19514.
[74]
Hu Z M, Zhang Y L, Jiang H Q, Lv J A. Sci. Adv., 2023, 9(25): eadh3350.
[75]
Sun J H, Liao W, Yang Z Q. Adv. Mater., 2023, 35(36): 2302706.

Funding

The National Natural Science Foundation of China(52173109)
The National Natural Science Foundation of China(52473107)
The Fundamental Research Funds for the Central Universities
PDF(13765 KB)

Accesses

Citation

Detail

Sections
Recommended

/