Development of Mirror-Image Protein Drugs: Advances in Chemical Synthesis, Mirror-Image Phage Display, and Computational Design

Ren Yuxiang, Han Dongyang, Shi Weiwei

Prog Chem ›› 2025, Vol. 37 ›› Issue (9) : 1261-1273.

PDF(2079 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2079 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (9) : 1261-1273. DOI: 10.7536/PC20250315
Review

Development of Mirror-Image Protein Drugs: Advances in Chemical Synthesis, Mirror-Image Phage Display, and Computational Design

Author information +
History +

Abstract

Mirror-image peptides and proteins composed entirely of D-amino acids have emerged as promising therapeutic candidates owing to their resistance to proteolysis and reduced immunogenicity. Mirror-image phage display (MIPD) is currently the main experimental technique for identifying mirror-image peptide ligands targeting disease-related proteins. However, the success of MIPD critically depends on synthetic mirror-image target proteins, which cannot be produced by traditional recombinant methods due to the intrinsic chirality of biological systems. Recent advances in chemical protein synthesis, such as enzyme-cleavable solubilizing tags, backbone-installed split intein-assisted ligation, and removable glycosylation modification-assisted folding strategies, have effectively addressed key challenges in preparing these complex mirror-image proteins. In addition, computational approaches, exemplified by AI-driven protein design, have become powerful complementary tools, accelerating the discovery and optimization of mirror-image protein drug candidates. Although mirror-image protein drugs have not yet reached clinical use, ongoing innovations in chemical synthesis and ligand screening methods are steadily advancing their therapeutic potential toward clinical translation.

Contents

1 Introduction

2 Mirror-image phage display

3 Chemical protein synthesis

3.1 Solid-phase peptide synthesis

3.2 Native chemical ligation

3.3 Peptide hydrazide ligation

3.4 Multiple-segment ligation

3.5 The ligation-desulfurization strategy

3.6 Solubilizing tags for hydrophobic segment

3.7 Chemoenzymatic D-peptide ligation

3.8 The folding of D-protein

4 Applications of mirror-image phage display

5 Computationally assisted discovery of mirror-image protein drugs

6 Conclusion and outlook

Key words

mirror-image protein / chemical protein synthesis / mirror-image phage display / protein de novo design

Cite this article

Download Citations
Ren Yuxiang , Han Dongyang , Shi Weiwei. Development of Mirror-Image Protein Drugs: Advances in Chemical Synthesis, Mirror-Image Phage Display, and Computational Design[J]. Progress in Chemistry. 2025, 37(9): 1261-1273 https://doi.org/10.7536/PC20250315

References

[1]
Xie X, Yu T T, Li X, Zhang N, Foster L J, Peng C, Huang W, He G. Signal Transduct. Target. Ther., 2023, 8: 335.
[2]
Ünlü A, Ulusoy E, Yiğit M G, Darcan M, Doğan T. Curr. Opin. Struct. Biol., 2025, 91: 103017.
[3]
Qi Y, Jiang H, Lun Y, Gang Q W, Shen S K, Zhang H, Liu M Y, Wang Y X, Zhang J. J. Am. Heart Assoc., 2025, 14(5): e037802.
[4]
Conibear A C. Nat. Rev. Chem., 2020, 4(12): 674.
[5]
Ai H S, Sun M S, Liu A J, Sun Z X, Liu T T, Cao L, Liang L J, Qu Q, Li Z C, Deng Z H, Tong Z B, Chu G C, Tian X L, Deng H T, Zhao S W, Li J B, Lou Z Y, Liu L. Nat. Chem. Biol., 2022, 18(9): 972.
[6]
Muttenthaler M, King G F, Adams D J, Alewood P F. Nat. Rev. Drug Discov., 2021, 20(4): 309.
[7]
Lau J L, Dunn M K. Bioorg. Med. Chem., 2018, 26(10): 2700.
[8]
Vrbnjak K, Sewduth R N. Pharmaceutics, 2024, 16(11): 1486.
[9]
Sharma K, Sharma K K, Sharma A, Jain R. Drug Discov. Today, 2023, 28(2): 103464.
[10]
Gare C L, White A M, Malins L R. Trends Biochem. Sci., 2025, 50(6): 467.
[11]
Wang Y F, Yang S Y. Signal Transduct. Target. Ther., 2020, 5: 86.
[12]
Deshaies R J. Nature, 2020, 580(7803): 329.
[13]
Shultz M D. J. Med. Chem., 2019, 62(4): 1701.
[14]
Bockus A T, Lexa K W, Pye C R, Kalgutkar A S, Gardner J W, Hund K C R, Hewitt W M, Schwochert J A, Glassey E, Price D A, Mathiowetz A M, Liras S, Jacobson M P, Lokey R S. J. Med. Chem., 2015, 58(11): 4581.
[15]
Nielsen D S, Shepherd N E, Xu W J, Lucke A J, Stoermer M J, Fairlie D P. Chem. Rev., 2017, 117(12): 8094.
[16]
Pham N B, Meng W S. Int. J. Pharm., 2020, 585: 119523.
[17]
Ratanji K D, Derrick J P, Dearman R J, Kimber I. J. Immunotoxicol., 2014, 11(2): 99.
[18]
Zhao L, Lu W Y. Curr. Opin. Chem. Biol., 2014, 22: 56.
[19]
Qi Y K, Zheng J S, Liu L. Chem, 2024, 10(8): 2390.
[20]
Lander A J, Jin Y, Luk L Y P. ChemBioChem, 2023, 24(4): e202200537.
[21]
Zheng J S, Liang J, Shi W W, Li Y, Hu H G, Tian C L, Liu L. Sci. Bull., 2021, 66(15): 1542.
[22]
Adamala K P, Agashe D, Belkaid Y, de C Bittencourt D M, Cai Y Z, Chang M W, Chen I A, Church G M, Cooper V S, Davis M M, Devaraj N K, Endy D, Esvelt K M, Glass J I, Hand T W, Inglesby T V, Isaacs F J, James W G, Jones J D G, Kay M S, Lenski R E, Liu C L, Medzhitov R, Nicotra M L, Oehm S B, Pannu J, Relman D A, Schwille P, Smith J A, Suga H, Szostak J W, Talbot N J, Tiedje J M, Venter J C, Winter G, Zhang W W, Zhu X G, Zuber M T. Science, 2024, 386(6728): 1351.
[23]
Dintzis H M, Symer D E, Dintzis R Z, Zawadzke L E, Berg J M. Proteins Struct. Funct. Bioinform., 1993, 16(3): 306.
[24]
Lohman R J, Nielsen D S, Kok W M, Hoang H N, Hill T A, Fairlie D P. Chem. Commun., 2019, 55(89): 13362.
[25]
Liu M, Li X, Xie Z X, Xie C, Zhan C Y, Hu X F, Shen Q, Wei X L, Su B X, Wang J, Lu W Y. Chem. Rec., 2016, 16(4): 1772.
[26]
Li Y, Cao X X, Tian C L, Zheng J S. Chin. Chem. Lett., 2020, 31(9): 2365.
[27]
Dooley C T, Chung N N, Wilkes B C, Schiller P W, Bidlack J M, Pasternak G W, Houghten R A. Science, 1994, 266(5193): 2019.
[28]
Li C, Zhan C Y, Zhao L, Chen X S, Lu W Y, Lu W Y. Bioorg. Med. Chem., 2013, 21(14): 4045.
[29]
Wei X L, Zhan C Y, Chen X S, Hou J P, Xie C, Lu W Y. Mol. Pharmaceutics, 2014, 11(10): 3261.
[30]
Wang J, Lei Y, Xie C, Lu W Y, Wagner E, Xie Z X, Gao J, Zhang X Y, Yan Z Q, Liu M. Bioconjugate Chem., 2014, 25(2): 414.
[31]
Xie Z X, Shen Q, Xie C, Lu W Y, Peng C M, Wei X L, Li X, Su B X, Gao C L, Liu M. Cancer Lett., 2015, 369(1): 144.
[32]
Li Y, Lei Y, Wagner E, Xie C, Lu W Y, Zhu J H, Shen J, Wang J, Liu M. Bioconjugate Chem., 2013, 24(1): 133.
[33]
Garton M, Nim S, Stone T A, Wang K E, Deber C M, Kim P M. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(7): 1505.
[34]
Schumacher T N M, Mayr L M, Minor D L Jr, Milhollen M A, Burgess M W, Kim P S. Science, 1996, 271(5257): 1854.
[35]
Smith G P. Angew. Chem. Int. Ed., 2019, 58(41): 14428.
[36]
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. FEMS Microbiol. Rev., 2022, 46(2): fuab052.
[37]
Chen S Y, Lovell S, Lee S M, Fellner M, Mace P D, Bogyo M. Nat. Biotechnol., 2021, 39(4): 490.
[38]
Chen F J, Pinnette N, Gao J M. ChemBioChem, 2024, 25(9): e202400072.
[39]
Heinis C, Rutherford T, Freund S, Winter G. Nat. Chem. Biol., 2009, 5(7): 502.
[40]
Urban J H, Moosmeier M A, Aumüller T, Thein M, Bosma T, Rink R, Groth K, Zulley M, Siegers K, Tissot K, Moll G N, Prassler J. Nat. Commun., 2017, 8: 1500.
[41]
Díaz-Perlas C, Varese M, Guardiola S, Sánchez-Navarro M, García J, Teixidó M, Giralt E. ChemBioChem, 2019, 20(16): 2079.
[42]
Chin J W. Annu. Rev. Biochem., 2014, 83: 379.
[43]
Wang L, Xie J M, Schultz P G. Annu. Rev. Biophys. Biomol. Struct., 2006, 35: 225.
[44]
Liu C C, Schultz P G. Annu. Rev. Biochem., 2010, 79: 413.
[45]
Pan M, Zheng Q Y, Wang T, Liang L J, Mao J X, Zuo C, Ding R C, Ai H S, Xie Y, Si D, Yu Y Y, Liu L, Zhao M L. Nature, 2021, 600(7888): 334.
[46]
Ai H S, Tong Z B, Deng Z H, Tian J K, Zhang L Y, Sun M S, Du Y X, Xu Z Y, Shi Q, Liang L J, Zheng Q Y, Li J B, Pan M, Liu L. Chem, 2023, 9(5): 1069.
[47]
Deng Z H, Ai H S, Sun M S, Tong Z B, Du Y X, Qu Q, Zhang L Y, Xu Z Y, Tao S X, Shi Q, Li J B, Pan M, Liu L. Mol. Cell, 2023, 83(17): 3080.
[48]
Ai H S, He Z Z, Deng Z H, Chu G C, Shi Q, Tong Z B, Li J B, Pan M, Liu L. Nat. Struct. Mol. Biol., 2024, 31(11): 1745.
[49]
Dong S W, Zheng J S, Li Y M, Wang H, Chen G, Chen Y X, Fang G M, Guo J, He C M, Hu H G, Li X C, Li Y M, Li Z G, Pan M, Tang S, Tian C L, Wang P, Wu B, Wu C L, Zhao J F, Liu L. Sci. China Chem., 2024, 67(4): 1060.
[50]
Merrifield R B. J. Am. Chem. Soc., 1963, 85(14): 2149.
[51]
Behrendt R, White P, Offer J. J. Pept. Sci., 2016, 22(1): 4.
[52]
Zheng J S, Yu M, Qi Y K, Tang S, Shen F, Wang Z P, Xiao L, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 2014, 136(9): 3695.
[53]
Callahan A J, Gandhesiri S, Travaline T L, Reja R M, Lozano Salazar L, Hanna S, Lee Y C, Li K H, Tokareva O S, Swiecicki J M, Loas A, Verdine G L, McGee J H, Pentelute B L. Nat. Commun., 2024, 15: 1813.
[54]
Collins J M, Porter K A, Singh S K, Vanier G S. Org. Lett., 2014, 16(3): 940.
[55]
Hartrampf N, Saebi A, Poskus M, Gates Z P, Callahan A J, Cowfer A E, Hanna S, Antilla S, Schissel C K, Quartararo A J, Ye X, Mijalis A J, Simon M D, Loas A, Liu S, Jessen C, Nielsen T E, Pentelute B L. Science, 2020, 368(6494): 980.
[56]
Zhang B C, Li Y L, Shi W W, Wang T Y, Zhang F, Liu L. Chem. Res. Chin. Univ., 2020, 36(5): 733.
[57]
Dawson P E, Muir T W, Clark-Lewis I, Kent S B H. Science, 1994, 266(5186): 776.
[58]
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu J M, Melnyk O. Chem. Rev., 2019, 119(12): 7328.
[59]
Huang D L, Guo W C, Shi W W, Gao Y P, Zhou Y K, Wang L J, Wang C, Tang S, Liu L, Zheng J S. Sci. Adv., 2024, 10(29): eado9413.
[60]
Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50(33): 7645.
[61]
Li Y M, Yang M Y, Huang Y C, Li Y T, Chen P R, Liu L. ACS Chem. Biol., 2012, 7(6): 1015.
[62]
Fang G M, Wang J X, Liu L. Angew. Chem. Int. Ed., 2012, 51(41): 10347.
[63]
Zheng J S, Tang S, Qi Y K, Wang Z P, Liu L. Nat. Protoc., 2013, 8(12): 2483.
[64]
Pan M, Gao S, Zheng Y, Tan X D, Lan H, Tan X L, Sun D M, Lu L N, Wang T, Zheng Q Y, Huang Y C, Wang J W, Liu L. J. Am. Chem. Soc., 2016, 138(23): 7429.
[65]
Gao S, Pan M, Zheng Y, Huang Y C, Zheng Q Y, Sun D M, Lu L N, Tan X D, Tan X L, Lan H, Wang J X, Wang T, Wang J W, Liu L. J. Am. Chem. Soc., 2016, 138(43): 14497.
[66]
Zuo C, Shi W W, Chen X X, Glatz M, Riedl B, Flamme I, Pook E, Wang J W, Fang G M, Bierer D, Liu L. Sci. China Chem., 2019, 62(10): 1371.
[67]
Flood D T, Hintzen J C J, Bird M J, Cistrone P A, Chen J S, Dawson P E. Angew. Chem. Int. Ed., 2018, 57(36): 11634.
[68]
Guo Q Y, Zhang L H, Zuo C, Huang D L, Wang Z A, Zheng J S, Tian C L. Protein Cell, 2019, 10(3): 211.
[69]
Chu G C, Liang L J, Zhao R, Guo Y Y, Li C T, Zuo C, Ai H S, Hua X, Li Z C, Li Y M, Liu L. CCS Chem., 2024, 6(8): 2031.
[70]
Huang Y C, Fang G M, Liu L. Natl. Sci. Rev., 2016, 3(1): 107.
[71]
Pan M, Zheng Q Y, Ding S, Zhang L J, Qu Q, Wang T, Hong D N, Ren Y J, Liang L J, Chen C L, Mei Z Q, Liu L. Angew. Chem. Int. Ed., 2019, 58(9): 2627.
[72]
Okamoto R, Morooka K, Kajihara Y. Angew. Chem. Int. Ed., 2012, 51(1): 191.
[73]
Li H X, Dong S W. Sci. China Chem., 2017, 60(2): 201.
[74]
Boll E, Drobecq H, Ollivier N, Blanpain A, Raibaut L, Desmet R, Vicogne J, Melnyk O. Nat. Protoc., 2015, 10(2): 269.
[75]
Blanco-Canosa J, Dawson P. Angew. Chem. Int. Ed., 2008, 47(36): 6851.
[76]
Zheng J S, Tang S, Huang Y C, Liu L. Acc. Chem. Res., 2013, 46(11): 2475.
[77]
Wang J X, Fang G M, He Y, Qu D L, Yu M, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2015, 54(7): 2194.
[78]
Wang Z M, Xu W L, Liu L, Zhu T F. Nat. Chem., 2016, 8(7): 698.
[79]
Maity S K, Jbara M, Laps S, Brik A. Angew. Chem. Int. Ed., 2016, 55(28): 8108.
[80]
Xu W L, Jiang W J, Wang J X, Yu L P, Chen J, Liu X Y, Liu L, Zhu T F. Cell Discov., 2017, 3: 17008.
[81]
Weidmann J, Schnölzer M, Dawson P E, Hoheisel J D. Cell Chem. Biol., 2019, 26(5): 645.
[82]
Gao Y P, Sun P F, Guo W C, Zhou Y K, Zheng J S, Tang S. Bioorg. Chem., 2024, 143: 107047.
[83]
Yan L Z, Dawson P E. J. Am. Chem. Soc., 2001, 123(4): 526.
[84]
Wan Q, Danishefsky S. Angew. Chem. Int. Ed., 2007, 46(48): 9248.
[85]
Sun Z Q, Ma W J, Cao Y H, Wei T Y, Mo X Y, Chow H Y, Tan Y, Cheung C H P, Liu J M, Lee H K, Tse E C M, Liu H, Li X C. Chem, 2022, 8(9): 2542.
[86]
Desmet R, Boidin-Wichlacz C, Mhidia R, Tasiemski A, Agouridas V, Melnyk O. Angew. Chem. Int. Ed., 2023, 62(18): e202302648.
[87]
Jin K, Li X C. Chem. Eur. J., 2018, 24(66): 17397.
[88]
Waliczek M, Stefanowicz P. Org. Lett., 2025, 27(5): 1159.
[89]
Gao X F, Du J J, Liu Z, Guo J. Org. Lett., 2016, 18(5): 1166.
[90]
Venneti N M, Samala G, Morsy R M I, Mendoza L G, Isidro-Llobet A, Tom J K, Mukherjee S, Kopach M E, Stockdill J L. J. Am. Chem. Soc., 2023, 145(2): 1053.
[91]
Jing R H, Walczak M A. Org. Lett., 2024, 26(13): 2590.
[92]
Han D Y, Cui Y, Deng X Y, Li C T, Zhu X L, Wang B J, Chu G C, Wang Z A, Tang S, Zheng J S, Liang L J, Liu L. J. Am. Chem. Soc., 2025, 147(5): 4135.
[93]
Han D Y, Deng X Y, Cui Y, Zhu X L, Deng G Y, Liang L J, Chu G C, Liu L. Angew. Chem. Int. Ed., 2025, 64(24): e202502884.
[94]
Dao Y K, Han L, Wang H X, Dong S W. Org. Lett., 2019, 21(9): 3265.
[95]
Wang J Z, Lin D A, Liu M, Liu H, Blasco P, Sun Z Q, Cheung Y C, Chen S, Li X C. J. Am. Chem. Soc., 2021, 143(32): 12784.
[96]
Liu H, Li X C. Acc. Chem. Res., 2018, 51(7): 1643.
[97]
Lee C L, Li X C. Curr. Opin. Chem. Biol., 2014, 22: 108.
[98]
Chisholm T S, Kulkarni S S, Hossain K R, Cornelius F, Clarke R J, Payne R J. J. Am. Chem. Soc., 2020, 142(2): 1090.
[99]
Fuchs O, Trunschke S, Hanebrink H, Reimann M, Seitz O. Angew. Chem. Int. Ed., 2021, 60(35): 19483.
[100]
Huang D L, Montigny C, Zheng Y, Beswick V, Li Y, Cao X X, Barbot T, Jaxel C, Liang J, Xue M, Tian C L, Jamin N, Zheng J S. Angew. Chem. Int. Ed., 2020, 59(13): 5178.
[101]
Bode J W. Acc. Chem. Res., 2017, 50(9): 2104.
[102]
Chatterjee C, McGinty R, Pellois J P, Muir T. Angew. Chem. Int. Ed., 2007, 46(16): 2814.
[103]
Pan M, Zheng Q Y, Gao S, Qu Q, Yu Y Y, Wu M, Lan H, Li Y L, Liu S L, Li J B, Sun D M, Lu L N, Wang T, Zhang W H, Wang J W, Li Y M, Hu H G, Tian C L, Liu L. CCS Chem., 2019, 1(5): 476.
[104]
Ai H S, Chu G C, Gong Q Y, Tong Z B, Deng Z H, Liu X, Yang F, Xu Z Y, Li J B, Tian C L, Liu L. J. Am. Chem. Soc., 2022, 144(40): 18329.
[105]
Gui W J, Davidson G A, Zhuang Z H. RSC Chem. Biol., 2021, 2(2): 450.
[106]
McGinty R K, Kim J, Chatterjee C, Roeder R G, Muir T W. Nature, 2008, 453(7196): 812.
[107]
Levinson A M, McGee J H, Roberts A G, Creech G S, Wang T, Peterson M T, Hendrickson R C, Verdine G L, Danishefsky S J. J. Am. Chem. Soc., 2017, 139(22): 7632.
[108]
Zhang B C, Deng Q, Zuo C, Yan B J, Zuo C, Cao X X, Zhu T F, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2019, 58(35): 12231.
[109]
Zheng J S, He Y, Zuo C, Cai X Y, Tang S, Wang Z A, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 2016, 138(10): 3553.
[110]
Li J B, Tang S, Zheng J S, Tian C L, Liu L. Acc. Chem. Res., 2017, 50(5): 1143.
[111]
Tang S, Zuo C, Huang D L, Cai X Y, Zhang L H, Tian C L, Zheng J S, Liu L. Nat. Protoc., 2017, 12(12): 2554.
[112]
Chang H N, Liu B Y, Qi Y K, Zhou Y, Chen Y P, Pan K M, Li W W, Zhou X M, Ma W W, Fu C Y, Qi Y M, Liu L, Gao Y F. Angew. Chem. Int. Ed., 2015, 54(40): 11760.
[113]
Zhou X M, Zuo C, Li W Q, Shi W W, Zhou X W, Wang H F, Chen S M, Du J F, Chen G Y, Zhai W J, Zhao W S, Wu Y H, Qi Y M, Liu L, Gao Y F. Angew. Chem. Int. Ed., 2020, 59(35): 15114.
[114]
Jacobsen M T, Petersen M E, Ye X, Galibert M, Lorimer G H, Aucagne V, Kay M S. J. Am. Chem. Soc., 2016, 138(36): 11775.
[115]
Zheng Y P, Zhang B C, Shi W W, Deng X Y, Wang T Y, Han D Y, Ren Y X, Yang Z Y, Zhou Y K, Kuang J, Wang Z W, Tang S, Zheng J S. Angew. Chem. Int. Ed., 2024, 63(14): e202318897.
[116]
Zuo C, Ding R C, Wu X W, Wang Y X, Chu G C, Liang L J, Ai H S, Tong Z B, Mao J X, Zheng Q Y, Wang T, Li Z C, Liu L, Sun D M. Angew. Chem. Int. Ed., 2022, 61(28): e202201887.
[117]
Morgan H E, Turnbull W B, Webb M E. Chem. Soc. Rev., 2022, 51(10): 4121.
[118]
Stevens A J, Sekar G, Shah N H, Mostafavi A Z, Cowburn D, Muir T W. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(32): 8538.
[119]
Li Y M, Li Y T, Pan M, Kong X Q, Huang Y C, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2014, 53(8): 2198.
[120]
Ding R C, Shi W W, Zheng J S. Org. Lett., 2023, 25(26): 4857.
[121]
Zhang B C, Zheng Y P, Chu G C, Deng X Y, Wang T Y, Shi W W, Zhou Y K, Tang S, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2023, 62(33): e202306270.
[122]
Shi W W, Wang T Y, Yang Z Y, Ren Y X, Han D Y, Zheng Y P, Deng X Y, Tang S, Zheng J S. Angew. Chem. Int. Ed., 2024, 63(9): e202313640.
[123]
Weinstock M T, Jacobsen M T, Kay M S. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(32): 11679.
[124]
Wang S Y, Zhou Q Q, Chen X P, Luo R H, Li Y X, Liu X L, Yang L M, Zheng Y T, Wang P. Nat. Commun., 2021, 12: 2257.
[125]
Zhao J, Liu X L, Liu J L, Ye F R, Wei B C, Deng M G, Li T H, Huang P, Wang P. J. Am. Chem. Soc., 2024, 146(4): 2615.
[126]
Dong W D, Yang X Y, Li X Y, Wei S, An C J, Zhang J, Shi X M, Dong S W. J. Am. Chem. Soc., 2024, 146(27): 18270.
[127]
Li H X, Zhang J, An C J, Dong S W. J. Am. Chem. Soc., 2021, 143(7): 2846.
[128]
Ye F R, Zhao J, Xu P, Liu X L, Yu J, Shangguan W, Liu J Z, Luo X S, Li C, Ying T L, Wang J, Yu B, Wang P. Angew. Chem. Int. Ed., 2021, 60(23): 12904.
[129]
Shi W W, Shi C W, Wang T Y, Li Y L, Zhou Y K, Zhang X H, Bierer D, Zheng J S, Liu L. J. Am. Chem. Soc., 2022, 144(1): 349.
[130]
Liu Y B, Han D Y, Liu L. Angew. Chem. Int. Ed., 2025, 64(25): e202504405.
[131]
Liu M, Pazgier M, Li C Q, Yuan W R, Li C, Lu W Y. Angew. Chem. Int. Ed., 2010, 49(21): 3649.
[132]
Liu M, Li C, Pazgier M, Li C Q, Mao Y B, Lv Y F, Gu B, Wei G, Yuan W R, Zhan C Y, Lu W Y, Lu W Y. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(32): 14321.
[133]
Zhan C Y, Zhao L, Wei X L, Wu X J, Chen X S, Yuan W R, Lu W-Y, Pazgier M, Lu W Y. J. Med. Chem., 2012, 55(13): 6237.
[134]
Müller-Schiffmann A, März-Berberich J, Andreyeva A, Rönicke R, Bartnik D, Brener O, Kutzsche J, Horn A H C, Hellmert M, Polkowska J, Gottmann K, Reymann K G, Funke S A, Nagel-Steger L, Moriscot C, Schoehn G, Sticht H, Willbold D, Schrader T, Korth C. Angew. Chem. Int. Ed., 2010, 49(46): 8743.
[135]
Welch B D, Francis J N, Redman J S, Paul S, Weinstock M T, Reeves J D, Lie Y S, Whitby F G, Eckert D M, Hill C P, Root M J, Kay M S. J. Virol., 2010, 84(21): 11235.
[136]
Pazgier M, Liu M, Zou G Z, Yuan W R, Li C Q, Li C, Li J, Monbo J, Zella D, Tarasov S G, Lu W Y. Proc. Natl. Acad. Sci. U. S. A., 2009, 106(12): 4665.
[137]
Mandal K, Uppalapati M, Ault-Riché D, Kenney J, Lowitz J, Sidhu S S, Kent S B H. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(37): 14779.
[138]
Uppalapati M, Lee D J, Mandal K, Li H Y, Miranda L P, Lowitz J, Kenney J, Adams J J, Ault-Riché D, Kent S B H, Sidhu S S. ACS Chem. Biol., 2016, 11(4): 1058.
[139]
Marinec P S, Landgraf K E, Uppalapati M, Chen G, Xie D, Jiang Q Y, Zhao Y L, Petriello A, Deshayes K, Kent S B H, Ault-Riche D, Sidhu S S. ACS Chem. Biol., 2021, 16(3): 548.
[140]
Yang W, Zhang Q, Zhang C S, Guo A N, Wang Y Y, You H T, Zhang X L, Lai L H. FEBS Lett., 2019, 593(12): 1292.
[141]
Valiente P A, Wen H, Nim S, Lee J, Kim H J, Kim J, Perez-Riba A, Paudel Y P, Hwang I, Kim K D, Kim S, Kim P M. J. Med. Chem., 2021, 64(20): 14955.
[142]
Kreitler D F, Yao Z H, Steinkruger J D, Mortenson D E, Huang L J, Mittal R, Travis B R, Forest K T, Gellman S H. J. Am. Chem. Soc., 2019, 141(4): 1583.
[143]
Lyamichev V I, Goodrich L E, Sullivan E H, Bannen R M, Benz J, Albert T J, Patel J J. Sci. Rep., 2017, 7: 12116.
[144]
Fleishman S J, Leaver-Fay A, Corn J E, Strauch E M, Khare S D, Koga N, Ashworth J, Murphy P, Richter F, Lemmon G, Meiler J, Baker D. PLoS One, 2011, 6(6): e20161.
[145]
Kuhlman B, Baker D. Proc. Natl. Acad. Sci. U. S. A., 2000, 97(19): 10383.
[146]
Fleishman S J, Whitehead T A, Ekiert D C, Dreyfus C, Corn J E, Strauch E M, Wilson I A, Baker D. Science, 2011, 332(6031): 816.
[147]
Lu P L, Liu L. Sci. China Chem., 2025, 68(3): 812.
[148]
Chevalier A, Silva D A, Rocklin G J, Hicks D R, Vergara R, Murapa P, Bernard S M, Zhang L, Lam K H, Yao G R, Bahl C D, Miyashita S I, Goreshnik I, Fuller J T, Koday M T, Jenkins C M, Colvin T, Carter L, Bohn A, Bryan C M, Fernández-Velasco D A, Stewart L, Dong M, Huang X H, Jin R S, Wilson I A, Fuller D H, Baker D. Nature, 2017, 550(7674): 74.
[149]
Whitehead T A, Chevalier A, Song Y F, Dreyfus C, Fleishman S J, De Mattos C, Myers C A, Kamisetty H, Blair P, Wilson I A, Baker D. Nat. Biotechnol., 2012, 30(6): 543.
[150]
Strauch E M, Bernard S M, La D, Bohn A J, Lee P S, Anderson C E, Nieusma T, Holstein C A, Garcia N K, Hooper K A, Ravichandran R, Nelson J W, Sheffler W, Bloom J D, Lee K K, Ward A B, Yager P, Fuller D H, Wilson I A, Baker D. Nat. Biotechnol., 2017, 35(7): 667.
[151]
Procko E, Berguig Geoffrey Y, Shen Betty W, Song Y, Frayo S, Convertine Anthony J, Margineantu D, Booth G, Correia Bruno E, Cheng Y, Schief William R, Hockenbery David M, Press Oliver W, Stoddard Barry L, Stayton Patrick S, Baker D. Cell, 2014, 157(7): 1644.
[152]
Cao L X, Goreshnik I, Coventry B, Case J B, Miller L, Kozodoy L, Chen R E, Carter L, Walls A C, Park Y J, Strauch E M, Stewart L, Diamond M S, Veesler D, Baker D. Science, 2020, 370(6515): 426.
[153]
Silva D A, Yu S, Ulge U Y, Spangler J B, Jude K M, Labão-Almeida C, Ali L R, Quijano-Rubio A, Ruterbusch M, Leung I, Biary T, Crowley S J, Marcos E, Walkey C D, Weitzner B D, Pardo-Avila F, Castellanos J, Carter L, Stewart L, Riddell S R, Pepper M, Bernardes G J L, Dougan M, Garcia K C, Baker D. Nature, 2019, 565(7738): 186.
[154]
Leaver-Fay A, Tyka M, Lewis S M, Lange O F, Thompson J, Jacak R, Kaufman K W, Renfrew P D, Smith C A, Sheffler W, Davis I W, Cooper S, Treuille A, Mandell D J, Richter F, Ban Y E A, Fleishman S J, Corn J E, Kim D E, Lyskov S, Berrondo M, Mentzer S, Popović Z, Havranek J J, Karanicolas J, Das R, Meiler J, Kortemme T, Gray J J, Kuhlman B, Baker D, Bradley P. Methods in Enzymology. Eds.: JohnsonM L, BrandL. San Diego: Academic Press, 2011. 487: 545.
[155]
Cao L X, Coventry B, Goreshnik I, Huang B W, Sheffler W, Park J S, Jude K M, Marković I, Kadam R U, Verschueren K H G, Verstraete K, Walsh S T R, Bennett N, Phal A, Yang A, Kozodoy L, DeWitt M, Picton L, Miller L, Strauch E M, DeBouver N D, Pires A, Bera A K, Halabiya S, Hammerson B, Yang W, Bernard S, Stewart L, Wilson I A, Ruohola-Baker H, Schlessinger J, Lee S, Savvides S N, Garcia K C, Baker D. Nature, 2022, 605(7910): 551.
[156]
Sun K, Li S C, Zheng B W, Zhu Y L, Wang T Y, Liang M F, Yao Y, Zhang K R, Zhang J Z, Li H Y, Han D Y, Zheng J S, Coventry B, Cao L X, Baker D, Liu L, Lu P L. Cell Res., 2024, 34(12): 846.
[157]
Dou J Y, Vorobieva A A, Sheffler W, Doyle L A, Park H, Bick M J, Mao B C, Foight G W, Lee M Y, Gagnon L A, Carter L, Sankaran B, Ovchinnikov S, Marcos E, Huang P S, Vaughan J C, Stoddard B L, Baker D. Nature, 2018, 561(7724): 485.
[158]
Berger S, Procko E, Margineantu D, Lee E F, Shen B W, Zelter A, Silva D A, Chawla K, Herold M J, Garnier J M, Johnson R, MacCoss M J, Lessene G, Davis T N, Stayton P S, Stoddard B L, Fairlie W D, Hockenbery D M, Baker D. eLife, 2016, 5: e20352.
[159]
Wang Y J, Xue P, Cao M F, Yu T H, Lane S T, Zhao H M. Chem. Rev., 2021, 121(20): 12384.
[160]
Gates Z P, Vinogradov A A, Quartararo A J, Bandyopadhyay A, Choo Z N, Evans E D, Halloran K H, Mijalis A J, Mong S K, Simon M D, Standley E A, Styduhar E D, Tasker S Z, Touti F, Weber J M, Wilson J L, Jamison T F, Pentelute B L. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(23): E5298.
[161]
Huang Y C, Wiedmann M M, Suga H. Chem. Rev., 2019, 119(17): 10360.
[162]
Rabideau A E, Liao X L, Pentelute B L. Chem. Sci., 2015, 6(1): 648.
[163]
Fan C Y, Deng Q, Zhu T F. Nat. Biotechnol., 2021, 39(12): 1548.

Funding

The National Natural Science Foundation of China(22307061)
PDF(2079 KB)

Accesses

Citation

Detail

Sections
Recommended

/