Applications of Covalent Organic Frameworks in Electrocatalytic Reduction of CO2

Jingyang Li, Dongge Xu, Yunchao Ma, Keyu Cui, Chunbo Liu

Prog Chem ›› 2025, Vol. 37 ›› Issue (11) : 1622-1630.

PDF(4810 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4810 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (11) : 1622-1630. DOI: 10.7536/PC20250401
Review

Applications of Covalent Organic Frameworks in Electrocatalytic Reduction of CO2

Author information +
History +

Abstract

Large emission of carbon dioxide leads to severe global warming effects. Therefore, it is urgent to convert carbon dioxide. Among various transformation technologies, electrocatalytic reduction of CO2 is able to efficiently and continuously convert carbon dioxide. However, the electrocatalytic reduction of CO2 needs to overcome a higher activation barrier. Traditional electrocatalysts such as metals, metal dichalcogenides, transition metal oxides and 2D metal-free catalysts (g-C3N4) are susceptible to inactivation in homogeneous systems and present low electron transfer efficiency, low ability to adsorb and activate carbon dioxide, low reaction kinetics and low selectivity. Covalent organic frameworks (COFs), which are fabricated through covalent bonds, are a class of emerging porous organic polymers. Ordered alignment and π-π interactions between layers facilitate the transportation of charge carriers. High specific surface area and appropriate pore size enable the adsorption of carbon dioxide and generate more active sites as well. All these unique advantages make COFs an ideal candidate for the electrocatalytic reduction of carbon dioxide. In this paper, we first summarize the synthesis and structural diversity of two- and three-dimensional covalent organic frameworks based on topology. Then, the development of 2D and 3D covalent organic frameworks for the electrocatalytic reduction of carbon dioxide is introduced, respectively. Finally, the potential development of COFs for electrochemical carbon dioxide reduction is discussed.

Contents

1 Introduction

2 Synthesis and structural diversity of COFs

3 COFs for electrocatalytic reduction of carbon dioxide

3.1 2D COFs electrocatalysts on CO2 reduction

3.2 3D COFs electrocatalysts on CO2 reduction

4 Conclusion and outlook

Key words

2D covalent organic frameworks / 3D covalent organic frameworks / structural synthesis, electrocatalysts / electrocatalytic reduction of carbon dioxide

Cite this article

Download Citations
Jingyang Li , Dongge Xu , Yunchao Ma , et al . Applications of Covalent Organic Frameworks in Electrocatalytic Reduction of CO2[J]. Progress in Chemistry. 2025, 37(11): 1622-1630 https://doi.org/10.7536/PC20250401

References

[1]
Chen Z H, Li N, Zhang Q C. Small Struct., 2024, 5(5): 2300495.
[2]
Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116(12): 7159.
[3]
Yang O Y, Gao X J, Qi G D, Wang Y, Dong W W, Tian Z F, Zhao J, Li D S, Zhang Q C. ACS Appl. Energy Mater., 2023, 6(1): 334.
[4]
Wang G X, Chen J X, Ding Y C, Cai P W, Yi L C, Li Y, Tu C Y, Hou Y, Wen Z H, Dai L M. Chem. Soc. Rev., 2021, 50(8): 4993.
[5]
Li L, Li X D, Sun Y F, Xie Y. Chem. Soc. Rev., 2022, 51(4): 1234.
[6]
Artz J, Müller T E, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W. Chem. Rev., 2018, 118(2): 434.
[7]
Ding M L, Flaig R W, Jiang H L, Yaghi O M. Chem. Soc. Rev., 2019, 48(10): 2783.
[8]
Razzak S A, Ali S A M, Hossain M M, DeLasa H. Renew. Sustain. Energy Rev., 2017, 76: 379.
[9]
Petrol. Sci. Eng., 2013, 109: 364.
[10]
Li J, Tan Y X, Lin J, Feng Y Y, Zhang X, Zhou E B, Yuan D Q, Wang Y B. J. Mater. Chem. A, 2024, 12(16): 9478.
[11]
Qiao J L, Liu Y Y, Hong F, Zhang J J. Chem. Soc. Rev., 2014, 43(2): 631.
[12]
Birdja Y Y, Pérez-Gallent E, Figueiredo M C, Göttle A J, Calle-Vallejo F, Koper M T M. Nat. Energy, 2019, 4(9): 732.
[13]
Ross M B, Dinh C T, Li Y F, Kim D, De Luna P, Sargent E H, Yang P D. J. Am. Chem. Soc., 2017, 139(27): 9359.
[14]
De Luna P, Hahn C, Higgins D, Jaffer S A, Jaramillo T F, Sargent E H. Science, 2019, 364(6438): eaav3506.
[15]
Corbin N, Zeng J, Williams K, Manthiram K. Nano Res., 2019, 12(9): 2093.
[16]
Elouarzaki K, Kannan V, Jose V, Sabharwal H S, Lee J M. Adv. Energy Mater., 2019, 9(24): 1900090.
[17]
He J F, Johnson N J J, Huang A X, Berlinguette C P. ChemSusChem, 2018, 11(1): 48.
[18]
Mukherjee A, Abdinejad M, Mahapatra S S, Ruidas B C. J. Mater. Chem. A, 2023, 11(17): 9300.
[19]
Nguyen T N, Salehi M, Le Q V, Seifitokaldani A, Dinh C T. ACS Catal., 2020, 10(17): 10068.
[20]
Duan X C, Xu J T, Wei Z X, Ma J M, Guo S J, Wang S Y, Liu H K, Dou S X. Adv. Mater., 2017, 29(41): 1701784.
[21]
Ma T Q, Kapustin E A, Yin S X, Liang L, Zhou Z Y, Niu J, Li L H, Wang Y Y, Su J, Li J, Wang X G, Wang W D, Wang W, Sun J L, Yaghi O M. Science, 2018, 361(6397): 48.
[22]
Luo X X, Li W H, Liang H J, Zhang H X, Du K D, Wang X T, Liu X F, Zhang J P, Wu X L. Angew. Chem. Int. Ed., 2022, 61(10): e202117661.
[23]
Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.
[24]
Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42(2): 548.
[25]
Feng X, Ding X S, Jiang D L. Chem. Soc. Rev., 2012, 41(18): 6010.
[26]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.
[27]
Diercks C S, Yaghi O M. Science, 2017, 355(6328): eaal1585.
[28]
Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131(25): 8875.
[29]
Li J, Jing X C, Li Q Q, Li S W, Gao X, Feng X, Wang B. Chem. Soc. Rev., 2020, 49(11): 3565.
[30]
Sun T, Xie J, Guo W, Li D S, Zhang Q. Adv. Energy Mater., 2020, 10(19): 1904199.
[31]
Zhao X J, Pachfule P, Thomas A. Chem. Soc. Rev., 2021, 50(12): 6871.
[32]
Shi Y Q, Yang J L, Gao F, Zhang Q C. ACS Nano, 2023, 17(3): 1879.
[33]
Chen Y F, Fang Y, Zhu N N, Luo X, Zhu G Y, Yang M H, Chen R H, Zeng X, Xiao J M, Liu L, Ning G H, Bin D S, Li D. Angew. Chem. Int. Ed., 2025, 64(19): e202424641.
[34]
Chen X L, Xie M, Zheng Z L, Luo X, Jin H C, Chen Y F, Yang G Z, Bin D S, Li D. J. Am. Chem. Soc., 2023, 145(9): 5105.
[35]
Xu S, Wu J H, Wang X, Zhang Q C. Chem. Sci., 2023, 14(47): 13601.
[36]
Liu X G, Huang D L, Lai C, Zeng G M, Qin L, Wang H, Yi H, Li B S, Liu S Y, Zhang M M, Deng R, Fu Y K, Li L, Xue W J, Chen S. Chem. Soc. Rev., 2019, 48(20): 5266.
[37]
Gu Q F, Lu X Q, Chen C L, Hu R J, Wang X, Sun G H, Kang F Y, Yang J L, Wang X, Wu J H, Li Y Y, Peng Y K, Qin W, Han Y, Liu X G, Zhang Q C. ACS Nano, 2023, 17(23): 23903.
[38]
Zhang S W, Wang X, Kang F Y, Gu Q F, Sun G H, Peng Y K, Zhang Q C. SmartMat, 2024, 5(5): e1314.
[39]
She P F, Qin Y Y, Wang X, Zhang Q C. Adv. Mater., 2022, 34(22): 2101175.
[40]
Sun J L, Fei Y T, Tang H W, Bao J C, Zhang Q C, Zhou X S. ACS Appl. Energy Mater., 2024, 7(18): 7592.
[41]
Yu F, Liu W B, Ke S W, Kurmoo M, Zuo J L, Zhang Q C. Nat. Commun., 2020, 11: 5534.
[42]
Wang H, Wang H, Wang Z W, Tang L, Zeng G M, Xu P, Chen M, Xiong T, Zhou C Y, Li X Y, Huang D L, Zhu Y, Wang Z X, Tang J W. Chem. Soc. Rev., 2020, 49(12): 4135.
[43]
Sharma R K, Yadav P, Yadav M, Gupta R, Rana P, Srivastava A, Zbořil R, Varma R S, Antonietti M, Gawande M B. Mater. Horiz., 2020, 7(2): 411.
[44]
Cui X, Lei S, Wang A C, Gao L K, Zhang Q, Yang Y K, Lin Z Q. Nano Energy, 2020, 70: 104525.
[45]
Hasija V, Patial S, Raizada P, Aslam Parwaz Khan A, Asiri A M, Van Le Q, Nguyen V H, Singh P. Coord. Chem. Rev., 2022, 452: 214298.
[46]
He C Y, Tao S S, Liu R Y, Zhi Y F, Jiang D L. Angew. Chem. Int. Ed., 2024, 63(22): e202403472.
[47]
Liu R Y, Tan K T, Gong Y F, Chen Y Z, Li Z E, Xie S L, He T, Lu Z, Yang H, Jiang D L. Chem. Soc. Rev., 2021, 50(1): 120.
[48]
Han B, Ding X, Yu B Q, Wu H, Zhou W, Liu W P, Wei C Y, Chen B T, Qi D D, Wang H L, Wang K, Chen Y L, Chen B L, Jiang J Z. J. Am. Chem. Soc., 2021, 143(18): 7104.
[49]
Lyle S J, Waller P J, Yaghi O M. Trends Chem., 2019, 1(2): 172.
[50]
Abuzeid H R, EL-Mahdy A F M, Kuo S W. Giant, 2021, 6: 100054.
[51]
Ding X S, Feng X, Saeki A, Seki S, Nagai A, Jiang D L. Chem. Commun., 2012, 48(71): 8952.
[52]
Xie Y F, Ding S Y, Liu J M, Wang W, Zheng Q Y. J. Mater. Chem. C, 2015, 3(39): 10066.
[53]
Das S, Sekine T, Mabuchi H, Irie T, Jin S K, Zhao Y, Fang Q R, Negishi Y. ACS Appl. Mater. Interfaces, 2022, 14(42): 48045.
[54]
Ascherl L, Sick T, Margraf J T, Lapidus S H, Calik M, Hettstedt C, Karaghiosoff K, Döblinger M, Clark T, Chapman K W, Auras F, Bein T. Nat. Chem., 2016, 8(4): 310.
[55]
Huang W, Zhang W F, Yang S, Wang L P, Yu G. Small, 2024, 20(18): 2308019.
[56]
Guan X Y, Fang Q R, Yan Y S, Qiu S L. Acc. Chem. Res., 2022, 55(14): 1912.
[57]
Wang S T, Da L, Hao J S, Li J, Wang M, Huang Y, Li Z X, Liu Z P, Cao D P. Angew. Chem. Int. Ed., 2021, 60(17): 9321.
[58]
El-Kaderi H M, Hunt J R, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.
[59]
Chang X X, Wang T, Gong J L. Energy Environ. Sci., 2016, 9(7): 2177.
[60]
Ma H C, Zhao C C, Chen G J, Dong Y B. Nat. Commun., 2019, 10: 3368.
[61]
Qian Y Y, Li D D, Han Y L, Jiang H L. J. Am. Chem. Soc., 2020, 142(49): 20763.
[62]
Wu Q, Mao M J, Wu Q J, Liang J, Huang Y B, Cao R. Small, 2021, 17(22): 2004933.
[63]
Dong H, Lu M, Wang Y, Tang H L, Wu D, Sun X J, Zhang F M. Appl. Catal. B Environ., 2022, 303: 120897.
[64]
Gong L, Gao Y, Wang Y H, Chen B T, Yu B Q, Liu W B, Han B, Lin C X, Bian Y Z, Qi D D, Jiang J Z. Catal. Sci. Technol., 2022, 12(21): 6566.
[65]
Yuan J J, Chen S T, Zhang Y Y, Li R J, Zhang J, Peng T Y. Adv. Mater., 2022, 34(30), 2203139.
[66]
Gong L, Chen B T, Gao Y, Yu B Q, Wang Y H, Han B, Lin C X, Bian Y Z, Qi D D, Jiang J Z. Inorg. Chem. Front., 2022, 9(13): 3217.
[67]
Yang X X, Du Y R, Li X Q, Duan G Y, Chen Y M, Xu B H. ACS Appl. Mater. Interfaces, 2023, 15(26): 31533.
[68]
Ren Z X, Zhao B, Xie J. Small, 2023, 19(33): 2301818.
[69]
Liu H Y, Chu J, Yin Z L, Cai X, Zhuang L, Deng H X. Small, 2018, 4, 1.
[70]
Han B, Jin Y C, Chen B T, Zhou W, Yu B Q, Wei C Y, Wang H L, Wang K, Chen Y L, Chen B L, Jiang J Z. Angew. Chem. Int. Ed., 2022, 61(1): e202114244.
[71]
Liu Z L, Yan S C, Fang Q R, Wang Y B, Yuan D Q. Chem. Commun., 2023, 59(63): 9615.

Funding

Project of Education Department of Jilin Province(JJKH20240560KJ)
PDF(4810 KB)

Accesses

Citation

Detail

Sections
Recommended

/